MAT?225 Section Summary: 7.1
Diagonalization of Symmetric Matrices
Summary

Ap we begin chapter seven, we ghould keep track of our apecific objectives:
we're interested in two poals:

1. we're examining the actions of symmetric matrices a8 linear fransfors-,
. 4 B T 1 i
mations, &1 1 eyl h wan Aeapneg [ 3]

2, we're interested in analvzing the structure of general matrices of in-
formation (like images, say. as described in the opening pages of the
chapter, p. 447).

Great things happen when you find yourself working with gymmetric matri-
oes. Their special structure leads to some seemingly magical properties, as
we seg here. Symmetric matrices are obviously an important special case,
as we found in working with the least-squares problems (where the left-hand

side was AT A, & symmetric matrix!).

Theorem 1: If A is symmetric, then any two eigenvectors from different
eigenspaces are orthogonal,
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Theorem 2: A, ., i3 orthogonally diagonalizeble if and only if A is a
gymmetric matrix.

The Spectral Theorem: Svmmetric Ay, . » has the following properties:

1. A bLas n resl eigenvalues, counting multiplicities (no complex eigenval- U h'h r
uesl). clir o

2. The dimension of the eigenspace for earch eigenwalue A equals the mnl- P "_[ J’F} ,]
tiplicity of A as a root of the cherseteristic equation (no “missing” A & Af
dimensions).

3. The eigenspaces are mutually orthogonal: eigenvectors corresponding
to different eigenvalues are crthogonal.

4, A is orthogonally diagonalizable.
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Since A = PDPY, where p is an orthogonal matrix, we ean write
A= Amu 4 dgugug + ...+ dgogul,

the spectral decomposition of 4. Each matrix u,;u? is & projection
matrix: the projection of vector x onto the subspace spanned by w,; is given

by
proj ,,,x = mul'x = (x- ughy

(the last part of the equation is one way of thinking of the projection that

I've emnphasized). 7 -1
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The action of A as & linear transformation i8 well understood, therefore:;
Ax = Jwul x + Agwui x + ... + Al x,

or
Ax = (gl + gl g + ...+ (Apnix)m,.

That is, we project x onto each basis vector, and then multiply each of these
projections by the corresponding eigenvelue. Alternatively, if
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