MAT360 Section Summary: 2.2
Fixed-Point Iteration

Summary
Suppose that you want to solve the equation
coe(z) = z

The value of = that satisfies this equation is celled s flxed point for the
function g{z) = cos(z), because it is a point such that g(z) = % — the image
is the same a8 the argnment,.

One way to go about finding the fixed point would be to rewrite the
equation a8

f(z) =cos(z) —z =0

and te use hisection to find a root of f (in fact, the unique root, as one can
see from the graph of f).

Fixed-point iteration is based on a couple of results from calculus: the
I¥T, and the MV, as follows:

Theorem 2.2:

» lf g € Cla, b]| and g(z) € [a, ] for all £ € [g,§], then g has a fixed point
in [&, B

» If, in sddition, 5'(x) exists on (e, b) end a positive constant & < 1 exists

m i i
g @<k, ¥z € (a,b), b r
then the fixed point in [g, b] is unique. -

The proofs are by /
» the VT, with #(z) = g(z) — 7; and ~ T
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» the MVT, and contradiction.
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So we know that there’s a fixed point on an interval [a, 2], and may even
know that it's unique. What now?

Now we assurne that, perhaps, if we start with a walue zy that’s close to
the real fixed point p, that by simply computing g(zp) {which is s zg) we'll
actuslly get closer to p.

Let’s lock at the “cobweb diagram” of this situation.

Cobwebbing
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Under what circumstances will that happen? In what circurnstances

would the same “cobwebbing” procedurs fail?
Well, in some circumstances, it’s guaranteed to work:

Theorem 3.3: Fixed-Point Theorem Let g € C[a,b] be such that
g(z) € |a,}], for all z in [a,b]. Suppose, in addition, that ¢ exists on (a,b),
and that a constant D < & < 1 exists with

F (@) £k
for sll z € (a,b). Then for eny number pq € [a, 8], the sequence

Pn = g(Pa-1)
1 > 1, converges to the unique fixed point p in |4, 5]

Proaf MVT applied to |p, — p|.

orp ] = L3lpd - 50 = [ 50l P <klpr
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Corollary 2.4: If g satisfies the hypotheses of Theorem 2.3, then bounds
for the error involved in using p, to approximate p are given hy
P — Pl £ K"max{py — a,&— po}

and
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forallm = 1.
Proof. by use of various inequalities.

There may be lots of ways to create a fixed-point function, and some of
them are better than others.
Example: coneider exercises 1 and 2.
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