MAT360 Section Summary: 2.3
Newton’s Method

Summary So... you mey be wondering what the big deal is about Fixed

Point Iteration {FPI): I mean, there are all these different functions that you
can use, but we don't seern to know how to guarantee that one is good and
another bad: some work, others are dirasters. If only we could find a function
that we could be sure of....

That danged Newton! He seemed to find all the cool stuff. He did it this
time, once again. It wasn't enough that he discovered the law of Universal
Gravitation, the theory of colors, integral and differentisl calculus, the bino-
mial theorem, Newton'’s law of cooling, the solution to the brachistochrone
problem: he had to discover Newton’s method too.... Who better, however?
What's the chance that the discover wounld have the name Newton too?;)

Make aure that yon're at this year’s Sehnert lecture, where Fred Rickey
will talk about Newton, the man: October 24th. Math majors and minors
should be at the banquet beforehand. Watch for the sign-up gheet in the
department.

The method is best approached from the direction of our old friend, the
Teylor series expansion, and the root problemn (the dual problem of the FP
problem): write

F(=) = flpo) + f'(po}(z — po) + O((z — m)”)
f(2) = f(po) + F(po)(z — po)

When x = p, f(p) = 0: so, starting from gy, perhaps a better estimate of 0.
p will be obtained hy solving the the following equation for g; such that —P @-}"
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(provided f'{p,-,) # 0). This is our scheme, illustrated in Figure 2.7, and
encapsilated in the fixed point function
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Notice that f(x) =0 == g(z) = » (provided f'{x) # 0).
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The really neat thing abont this FPI funetion g is that ¢'(p) = 0, which
means that convergence of the FPI scheme will be quite fast:
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Iif f{p) =20, then

This is the feature that makes Newton's method so very grand and wonderful,
and which justifies our interest in the method.

In fact, Newton's method is said to converge quadratically, by contrast
with FPl which is generally said to converge linearly:
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when p, gets into close proximity to p. When will we be assured of “con-
tracting”? When

L N
519 (P)lipa = pl <1

Obviously, as long as g (p) is bounded, there is a neighborhood of p in which
this will heppen.

Problems in paradise....
What makes it not quite a8 good as sliced bread?
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& [t won't find complex rogts, that's for sure;
¢ Unlike bisection, it doesn't produce iterates that bracket a root;

s+ Well, we have to compute derivatives, for one thing, and those sre
generally expensive — also we have to be able to compuote them.

One cheap fix for the derivative problem is to use the discrete approxd-
mation to the derivative: that is,
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Hence, the iteration function becomes
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which is the heart of the Recant method, which requires two approximations

to start {py and py), and doesn’t cooverge quadraticelly (although it does

converge super-linearly, with exponent = l.ﬁlﬁ?Henc:e, it is still hetter than

Jf"  ‘Thisection in terms of convergence; it may, however, fall to bracket a root (it
3 will lose track of the interval on which a solution exists...).

The method of False Position { Aegule Feisi) is just a modified bisection,
that should approach the root faster {because it uses secant lines rather than
midpoints), but has the unfortunate property that it doesn’t necessarily pro-
duce a dirninishing interval squeezing the root {as illustrated in Figure 2.10).
While sn interesting twist on the bisection method, it is not recommended.
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