MAT360 Section Summary: 2.4
Error Analysis for Iterative Methods

Summary

Alex asked if there’s a good way of getting a handle on the number of
terms in Newton's method (in problem #5 of 2.3 he discovered that the an-
swers in the back of the text were given to more aceuracy than 107 required).
That's the subject of this section.

We learned a bit previously in section 2.2: in 2.2 we obtained useful
hounds for fixed-point methods, ez
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where g(z) € [a,b]¥z € [a, 8], and |¢'(z)| £ k < 1 on [g, 5], which brackets
the fixed point p. You can use this for Newton's method, but perhaps we can
do better, since the convergence is better (1've asserted that it’s “quadratic”,
rather then linear).

Theorem 2.5 (from section 2.3): Let f € C%g,b]. If p € [a,8] is such
that f(p) = 0 and f'(p) # 0, then 3§ > 0 such that Newton’s method
generates a sequence {p, }oo, converging to p for any initial approximation
mElp-Sp+i]

This result is “obvious” (1 claimed, in 2.2], since
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when p, gets into close proximity (i.e. a J-neighborhood) of p. We can be

assured of “contracting” ss long as the magnitude of ¢" (z) is bounded (e.g.
|g"(z)| < M) in that neighborhood, so long as
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It's obviously true when p, = p, and we simply choose |p, — p| < fg to be
assured that we'll converge by the Fixed-Point Theorem {2.3).



Definition 2.6: Suppose that {p,}7, is a sequence that converges to p,
with p, # p for all n. If positive constants A and o exist with
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then the sequence converges to p of order «, with asymptotic errar
constaot A.

1. If & = 1, the sequence is linearly convergent (e.g. stendand conver-
gent fized potnt function, with ¢'(p) £ 0), whereas

2. if o = 2, the eequence is quadratically convergent (e.g. Newton's
method, with g'(p) # 0).

Q: Whet does asymptotic mean?
Q: 1s bisection linearly convergent?! Contrast this with Exercise #9, for
your homework. o (6,1]
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Theorem 2.7: Let g € C|a, b| be such that g{z) € |a, vz € |a, §|. Suppoee,
in addition, that g is continuons on (a,b) and a positive constant k£ < 1

existe with
gz <k

vz € {a,b). If ¢'(p) # 0, then for any number gy in [e, 8], the sequence of

iterates -
l Pn = 9(Pa-1) |

!The Bisection Algorithm is Not Linearly Convergent. Sui-Sun Cheng and Teon-Teer
Lu, Colloge Math Journal: Volume 16, Number 1, {1985), Pages: 58-57.
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for = > 1 converges only linearly to the unique fixed point p € [a, 3]

Proof (by the MVT)

Pacs =P = 5(72) - 9%
= 95 (p-p)

b
\ - loni-l"/J ] étjwtdﬂ-—
i F _F = :.‘. 3 /‘f‘&) g



Theorem 2.8: Let p be a solution of the equation = = g(z). Suppose
that ¢'(p) = 0 and g” is continuous and strictly bounded by M on an open
interval I containing p. Then 35 > 0 such that, for py € [p — §,p + 4], the
sequence {p, = §{gn-1) }o, converges at least quadratically to . Moreover,
for sufficiently large values of r,

M :
[Pt — Pl & 1P — 2
(Hence, Newton’s method is quadratie. )

Proof {lby Taylor series, and Fixed-Point theorem)
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Example: Here's where we can make use of the quadratic convergence to
address Alex's question: For problem #5b, for example, with

flz)=o"+32° -1

o = 3 and a solution py = —2.87939, we use
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and then compute the first and second derivatives of g. We note that by
theorem 2.2 there is a unique fixed point in the interval [-3, —2.74]; also we
see that ¢ has a maximum value of g (2)] 2.5 on the interval [—3, —2.74].
¢ has a maximum value of =27 on the interval, so we could use Equation
(1} above to make our estimate (it gives 8 iterations).

We can do better. of conrse!

Theoremn: the secant method 5 of order the golden mesn.

Motivation: #12
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Definition 2.9: A solution g of f(z) = 0 is a zero of multiplicity m of f
i, for z # p, we cen write f(x) = (z — p)™q(x), where lim,—, g{z) # 0.

Theorem 2.10: f € ("[a, b] has a simple zero at p € (0,h) <= F(p) =0,
but f{p) # 0.

Theorem 2.11: f € C™[a,#] has a zero of multiplicity m at p € (a,8) <=
D= f(F) = F(p) = ... = Fm(p), bt Fim)(p) £D.
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