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Miiller’s Method and zeros of Polynomial o M

“Hamming's motto, “the purpose of computing is insight, not numbers’,
is particularly apt in the area of finding roots. You should repeat this motto
aloud whenever your program converges, with ten-digit accuracy, to the
wrong root of a problem, or whenever it fails to converge because there
is actually no root, or because there is a roct but your initial estimate was
not sufficiently close to it.” From Numerical Becipes in O,

Summary

Theorem 2.15 (Fundamental Theorem of Algebra): If P(x) is a poly-
nomial of degree n > 1 with real or complex coefficients, then P{z) = 0 has
at least one {possibly complex) root.

(Ironically — embarrassingly, for the algebraists— the easiest proof comes via
complex analysis. )

Corollary 2.16 If P is of degree n, then P(z) can be expressed as
P(z) = @n(# — 2 )™ (& — 22)™ - - - (& — 3 )™
where the &; are distinct roots, and
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Corollary 2.17 If P and ¢ are polynomials of degree at most 7, then
if {£1,...,2x}, with & > n, are distinct numbers with P(x;) = Q(z) for
i=1,...,k& then P = (). ln other words, if n** degree polynomials agree on

7+ 1 peints, then they are equal.

Horner’s Method: computes values of polynomials efficiently. The idea
is prethy simple: we simply evaluate the terms of the nested form of the
pobynomial P successively, from the inside out, where we've expanded about



the point xy at which we wish to evaluate P. This is the Taylor series
expansion of 7 about zp.

Given P(x) -|-- oo x4 oy, evaluate Plag) starting from the
Tavior series exparst as follows:

I. P ecan be written as
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Factoring & term of (z — =), we have that

P(z) = P(Zo) + (z — 20)Q(z) = by + (= — z) Q=) (1)
where we have defined & = P(z¢). The question is how to compute &.
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then we can write

(a1 — Toba)a" ™ + ...+ (b — mobs)z 4 (B — zobi)
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2. If we write

and, solving for bz in terme of by fork=mn—1,..., L0,

{ by = @y + b1 2. ]
Then P{za) = b.-
The cost of Horner's method is 2 multiplications and » additions.

If we're using Newton’s method with for roots of P, then we're in Inck,
because we can perform the same operation with polynomial Q. Why would
we want to evaluate Q(xp)? Because {(zs) = F(zy)! Therefore
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When we've found an appmﬂmate runt r1, then we will have that
Plel = Q) «
Plz) = (2 —m)Q(=) + b ~ (& — r1)Q(z) leer) s

(since P(r1) = b r= 0), so that further roots of P could be determined
by switching focus to €. This process is called deflation (because we're
letting the air out of our n* degree polynomisl to get an (n — 1)t* degree
polynomial). As roote are found, continue deflating until yon're down to &
linear polynomiel, whose solution ean be written down instantly.

Errors will creep in as this process continues. 1t's best to start with the
gmall roots, and work up to the big roots, if possible. When all is said and
done, you might vee s few iterations of Newton’s method on the roots with
the original polynomizl to refine the approximate roots obtained by deflation.

This process of deflation works even when the function f we're desling
with is not & polynomial. The next technique is a pood general root finder,
with nearly quedratic convergence.

Miil er*s method: is a generalization of the secant method, where rather
than a secant line using two points, we create a paraholic fit to three pointa.
Other than that, there’s really ne difference. So what’s the big deal?

¢ Well, for one thing, Miiller'’s method will find complex roote for us,
starting from real values.

» Shght issue: you wil require three initiel puesses. (Miller's is pretty
robust to bad choices in initial guesses. )

¢ You have to be careful to choogse your root of the quadratic, as dircussed |
previously. Choose the sign in the denominator to maximize the de- I-'
nominator (again, find smaller roots first): starting with #., Tn-1, and | f
Tq_9, and having written quadratic f{z) as

¥ f(z) = alz — z,)? -|— bz —z,) €.\
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we can solve for o, b, and ¢, and then choose .., to be the correspond-
ing root of f: if the coeflicients of f are resl, then
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If the coeflicients are complex, then vou want to choose the sign so a8
1o maximize the modulus of

that is, the size of —tz—{—



