MAT360 Section Summary: 4.1b
More Numerical Differentiation

1. Summary Last time we looked at two- and three- point formulas. This
time we want to go bevond those, to three and five paint formulas.

2. Definitions

s Other three-point formulas: Assume that i > (.

~ forward:
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— backward:
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Recall that the centered-difference formula is a three-point for-
minla, with the coefficient of the 2 term equal to zero, and whose
error term is of opposite sign and abount twice as good {i.e., half
as mmch):
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This suggests that we might mix and mateh to create one of the
following

s five-point formulas
— It we combine the backward and forward three-point fornmlas
with four times the centered difference formula,
forward | deentered | backward
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then we might hope that these errors will essentially cancel,
and we end up with
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Notice the exciting dewelopment: we went from an O(h%)
method to an QA method, dependent on the fifth derivative
of f.
Notice alsc that, althcugh this is called a five-point method,
only four points actually figure into the derbwative caleula-
tions.

— forward:
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This can be obtained using Teylor series and by carefully se-
lecting the coefficients of the f(zg +4h),7=0,...,4s0 a8 to
get eancellation up to the fiftth derivative terms. Then agpin,
assuming continuity of the fifth derivative we can use the In-
termediate Value Theorem to arrive at the error term.
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We need & linear combination of these things that gives us

constant first second third fourth fifth
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— Obvionsly there’s a corresponding backward formula where
we merely replace the formula above by the one obtained by
petting i to —h.

These formulas are ueeful at the endpoints of data sets, where
we don’t have the neighboring points that we would need for a
centered derivative approximation.

Eech i3 an exercise in linear elgebra, actually, end not so terribly
cornplicated.



s Higher order formulas: Higher order terms can be arrived at
via the Taylor series expansions, too: for example, the approxi-
mation
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comes right of the Tavlor series for
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3. Properties/Tricks/Hints/Etc.

One interesting observation is that if an error term is dependent on
the nt* derivative term ™), then the approximetion will be exaet for
polynomial functions of degree n — 1. So, if yon knew that a certain
phenomenon would theoretically be modelled by & cubic function, then
we can get the derivatives exactly right using position data and the
appropriate form of the approxdmation to the derivatives (e.g. a five
point scheme).



