MAT360 Section Summary: 5.3
Higher-Order Taylor Methods

1. Summary

Rather than stop at the first term in the Taylor expansion, as Fuoler
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we continne on and ereate an 1™ order Tavlor method:
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tives of y: well, recall the chain rule that we thought might come in
handy sometimes for bounding the second derivatives in Eunler’s error
calculations:
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‘We can continue thig for higher derivatives, although the results quickly
lock rather nasty: e.p.
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It's actually a lot essier if you're working with a particular case and
don’t have to work in genmeral. For example, if you were looking at
Exercige 6b, p. 256,
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Then f(t,y} =1t & y, and all higher partial derivatives of f disappear:
s0 the general form is wasteful, We simply compute higher derivatives
directly, as follows:
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So we've fipured out quickly that all higher derivatives of ¢ are equal.
This I8 an interesting development: it means that ¥ is a function of
the form ae® (which is its own derivative plus sore “trenstant stuff”
that disappeared quickly from the higher derivatives (sounds like a
polynomial to me...}). Yon can check that the general solution is

#(t) = (1+ a)et — (1 +1)

where y(0) = o. For 6b, p. 256, & = —1, BD the unigue

solution.

2. Definitions

¢ Local Truncation Error: The error made in approximating the
solution of an IVP with a difference scheme of the form
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1t’s the error we'd make &t (£;, ;) using the particulsr scheme.

For Euler’s method, the local truncetion error is
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for some £ € (f,441).

For the Taylor method of order 2,
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5o the local truncation error is
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for somme £ € (%5, t:11).

. Theorems/Formulas

Theorem 5.12: 1f Teylor’s method of order n approximates the usual

IVP
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and if ¢ € ontl [e, 8], then the local trunecation error is O(h®).



