MAT360 Section Summary: 5.4
Runge-Kutta Methods

1. Summary

| want you to see and understand the idea behind Runge-Kutta meth-
ods. which will be used in place of the Taylor methods. But the Tayvlor
methods provide the impetus for these methods ~ they're a critical
place to start.

The problem with the Tavlor methods is that we have to compute all
kinds of partial derivatives to make the methods work. Runge-Kutta
methods will approximate those partial derivative terms by a suceession
of approximations computed using only the function f{t, y(t}).

For the Tavlor method of order 2, we start with
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But those partial derivatives sure are a pain: any way we can get there
more easily?

Yes, but we have to go through some more partial derivative pain: we
coneider Taylor's Theorem extended to functions of two variables:



Theorem 5.13 Suppose that f{£,y) has continuous partial derivatives
of order less then or equel ton+1lon D = {{t,¢y)lle £t <bhc<y < d},
and let (g, yn) € D. For every (t,y) € D, there exists £ between £ and
{ and there exists i between ys and ¢ with
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Now we're ready for the trick: this is the use of the Taylor series that you
might not have thought of, ont there on vour desert island, even if vou'd sat
there for a few vears. We want to replace & in (1) with a value of f computed
at an intermediate location, rather than on the endpoint, as Fuler did. That
is, consider f{t + o, y(t) + ), expanded using the Tavlor series:
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The expansion certainly resembles ¢, and if we make a good choice of o and
. we can make them equal (up to the term Ry, which we're going to drop
A8 OUT CrTor):
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Given this choice, 7] is (’J[hi}f just like Taylor 2; we call this method Runge-
Kutta-2, {aka RK-2, or the Midpoint method):
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This sort of trick can be repeated for higher order Taylor methods, al-
though it's usually only continued up to RK-4:
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You might recognize the sum 'jL{-:i-'j + 26 -+ 2ky -+ ky) in the formula for w;.
a8 the composite trapezoidal scheme for sppraximeating the integral

y (t)dt
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This scheme is O(A%), just like Taylor-4, only we didn’t need to compute a
single partial derivative. 1t's wonderful! This method, therefore, will extend
eadily to systems of initisl value problems.
We can revisit onr pendulum example, for example, to see If we see any
improvernent. in the solution.

Compare REK-4 to Euler on the Pendulum problem:



