Number Theory Section Summary: 4.4 Linear Congruences

Summary

Recall that a congruence is an equation of the form $P(x) \equiv 0 \pmod{n}$; a linear congruence should be that equation with P(x) = ax - b - and it is!

$$ax - b \equiv 0 \pmod{n} \iff ax \equiv b \pmod{n}$$

which means that $\underbrace{ax-b=ny}_{}$ for some $y\in \mathbb{ZZ}$; rewriting, we have that $\underbrace{ax-ny=b}_{}$

to be solved in integers – that is, a Diophantine equation?

Now the Diophantine equation could have an infinite number of solutions, but since we're working modulo n, we're only interested in solutions distinct mod n.

2. Definitions

linear congruence a congruence in which P(x) is of the form P(x) = ax - b.

3. Theorems

Theorem 4.7: The linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if d|b, where $d = \gcd(a, n)$. If d|b, then the linear congruence has d mutually incongruent solutions modulo n.

Example: #1bdf, p. 82 Solve the following linear congruences:

$$5x \equiv 2 \pmod{26}$$

 $5.5x = 5.2 \pmod{26}$ $25 \times = 10 \pmod{26}$ $-x = 10 \pmod{26}$ $x = -10 \pmod{26}$ $x = 10 \pmod{26}$

$$36x \equiv 8 \pmod{102}$$

$$140x \equiv 133 \pmod{301}$$
[Hint: $\gcd(140, 301) = 7$]

4. Properties/Tricks/Hints/Etc.

The rest of the solutions are obtained by adding multiple? of 43 - three will be distinct (incongrest) modulo 301