Number Theory Section Summary: 6.1

Number-Theoretic Functions

Summary

We encounter two interesting number-theoretic functions, τ and σ , and discover an interesting relationship between these and the prime factorization of a number.

The concept of a multiplicative function is also introduced, which will prove useful (now and later on).

2. Definitions

Number-theoretic function: any function whose domain is the set of positive integers

Definition 6.1: Given a positive integer n, let $\tau(n)$ denote the number of positive divisors of n, and $\sigma(n)$ denote the sum of those divisors.

The notation

$$\sum_{d|n} f(d)$$

means "sum the values of f as d runs over the divisors of n". Given that, then

$$\tau(n) = \sum_{d|n} 1$$

and
$$\overline{\sigma(n)} = \sum_{d|n} d$$
Problem: Evaluate $\tau(24)$ and $\sigma(24)$.
$$\tau(24) = 8 \quad \sigma(24) = 60$$
Problem: Evaluate $\tau(240)$ and $\sigma(240)$.

$$T(240) = 20$$
 $\sigma(240) = 744$

Problem: What are $\tau(p)$ and $\sigma(p)$ when p is prime?

$$T(p) = 2$$

$$S(p) = p + 1$$

#15
$$n, n+2$$
 tun primes
$$6(n+2) = n+3 = (n+1)+2$$

$$= 6(n)+2$$

Problem: #15, p. 110

Problem: How do $\tau(4)\tau(6)$ and $\tau(24)$ compare?

Definition 6.2: A number-theoretic function is said to be multiplicative if

$$f(mn) = f(m)f(n)$$

whenever gcd(m, n) = 1

Examples:
$$f(n) = 1$$
, $f(n) = n$. Let $f(n) = n$; then
$$f(n,n) = m \cdot n = f(n) \cdot f(n)$$

By induction,

$$f(n_1n_2\cdots n_r)=f(n_1)f(n_2)\cdots f(n_r)$$

whenever the n_i are pairwise relatively prime. Hence, a multiplicative function is completely determined for n once its values on the prime powers of the factorization of n are known:

$$f(p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}) = f(p_1^{k_1})f(p_2^{k_2})\cdots f(p_r^{k_r})$$

Example: #17, p. 110 Show that
$$f(n) = n^k$$
; $n = 1 + p!$ which $k \in \mathbb{Z}$. $f(m : n)^k = m^k \cdot n^k$

3. Theorems

Theorem 6.1 If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the prime factorization of n > 1, then the positive divisors of n are precisely those integers of the form $d = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$, where $0 \le a_i \le k_i$ for i in $\{1, \ldots, r\}$.

Theorem 6.2 If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the prime factorization of n > 1, then

and

The proof of the first is a counting argument, and the second uses a sum of a geometric series and a neat decomposition.

The notation

$$\prod_{i=1}^{n} f(i) = 7 4 4$$

means "multiply the values of f as i runs over from 1 to r". Given that, then

$$\tau(n) = \prod_{i=1}^r (k_i + 1)$$

and

$$\sigma(n) = \prod_{i=1}^{r} \frac{p_i^{k_i+1} - 1}{p_i - 1}$$

Let's check for n = 240.

Theorem 6.3 The functions τ and σ are multiplicative functions.

Lemma If gcd(m, n) = 1, then the set of positive divisors of mn consists of all products d_1d_2 , where $d_1|m$, $d_2|n$, and $gcd(d_1, d_2) = 1$; furthermore these products are all distinct.

Theorem 6.4 If f is a multiplicative function and F is defined by

$$F(n) = \sum_{d|n} f(d)$$

then F is also multiplicative.

Corollary: the functions τ and σ are multiplicative functions.