Number Theory Section Summary: 7.5 An application to Cryptography

1. Summary

Cryptography is that application which would have driven G. H. Hardy crazy: he was in love with Number Theory because of its purity, because it didn't have application. Well, roll over in your grave Godfrey Hardy!

2. Definitions

- Cipher the code
- Plaintext the message to be encrypted
- Ciphertext the encrypted message
- Frequency Analysis using the known distribution of letters (or words) to break a code.

Caesar Cypher (circa 50 B.C.) – Julius Caesar used this cipher to encode messages to Marcos Cicero: e.g.

$$C \equiv P + 3 \pmod{26}$$

(any shift – other than multiples of 26! – will do). It's easy to decode:

$$P \equiv C - 3(\bmod 26)$$

This system is *monoalphabetic*: each letter is always represented using the cipher letter, so it's vulnerable to frequency analysis attacks.

Here's a Caesar Cipher applet for you to try....

Exercises #1, 2, p. 155

A generalization of the Caesar cipher would be to choose a linear transformation with a slope other than one: in other words,

$$C \equiv aP + b(\bmod 26)$$

1

Captain Crunch era with gcd(a, 26) = 1

Exercises #3, p. 15

Vigenère Cypher
below the message, a
ter on the two string

 $(a^{ab})^{16}$ (=aP+b (a.26)) (-b=aP (a.26))with gcd(a,26)=1. a'(c-b)=a'aP=1.P=P(a.26)

Exercises #3, p. 155, shows how to decode one.

Find a'/ a'a = 1 (mod26)

Vigenère Cypher (1586): a one-time key sequence is used, repeated below the message, and the addition is performed character by character on the two strings.

$$C_i \equiv P_i + b_i \pmod{26}$$

It's easy to decode, in blocks of length n, where n is the length of the key:

$$P_i \equiv C_i - b_i \pmod{26}$$

This system is *polyalphabetic*: a letter is generally represented by multiple ciphertext letters, so it's less vulnerable to frequency analysis attacks. However, once the length n of the key is discovered, it becomes n copies of a monoalphabetic cipher, and is vulnerable again.

Here's a Good website for trying it out.

Of course, the choice of 26 is simply a convenience since we're dealing with the English language. There's nothing particularly special about 26.

Hill's cipher (1929): encrypts blocks of letters, rather than letter by letter. Basically, a block is transformed using linear algebra and linear congruences. Recall from section 4.4:

Theorem 4.9: The system of linear congruences

$$C_1 \equiv aP_1 + bP_2 \pmod{n}$$

 $C_2 \equiv cP_1 + dP_2 \pmod{n}$

has a unique solution whenever gcd(ad - bc, n) = 1. The quantity ad - bc is the determinant of the matrix. We can work with larger $n \times n$ systems, replacing that quantity with the determinant of the matrix.

 $2 \quad \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \begin{bmatrix} C_1 \\$

The code is deciphered by inverting the matrix:

$$P_1 \equiv dC_1 - bC_2 \pmod{\mathfrak{n}}$$

 $P_2 \equiv -cC_1 + aC_2 \pmod{\mathfrak{n}}$

Here's a Good website for trying it out.