Section 2.2: Induction

Abstract:

In this section we investigate a powerful form of proof called **induction**. This is useful for demonstrating that a property, call it P(n), holds for all integers n greater than or equal to 1.

Actually, the ``1" above is not essential: any ``base integer" will do (like 0, for example: it really only matters that there be a ``ground floor", or ``anchor").

Induction

Induction is a very beautiful and somewhat subtle method of proof: the idea is that we want to demonstrate a property associated with natural numbers (or a subset of the natural numbers). As a typical example, consider a theorem of the following type:

Prove that, for any natural number n, $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ (Gauss's theorem, stated when he was seven or so).

An induction proof goes something like this:

- We'll show that it's true for the first case (usually k=1, called the base case).
 While the first case is often k=1, this isn't mandatory: we simply need to be sure that there is a first case for which the property is true. k=0 is another popular choice....
- Then we'll show that, if the property is true for the k^{th} case, then it's true for the $(k+1)^{th}$ case (the inductive step).
- Then we'll put them together: if it's true for 1, then it's true for 2; if it's true for 2, then it's true for 3; ``to infinity, and beyond!" Or up the ladder, as our author would say.

Imagine dominoes falling. That's what it's like.

1 of 3 2/2/2005 7;16 PM

The most commonly used form of the principle of induction is expressed as follows:

First Principle of Mathematical Induction:

1.
$$P(1)$$
 is true
2. $(\forall k)[P(k)$ true $\rightarrow P(k+1)$ true] $\rightarrow P(n)$ true for all posi

or, more succinetly,

$$P(1) \wedge (\forall k)[P(k) \rightarrow P(k+1)] \rightarrow (\forall n)P(n)$$

where the domain of the interpretation is the natural numbers. This is just *modus* ponens applied over and over again! 1. P(1)

Vocabulary:

2. (4k) [P(k)-> P(km)] Lup 3. P(1) ->P(2) 2, n;

- inductive hypothesis: P(k)
- inductive hypothesis: P(k)• basis step (base case, anchor): establish P(1)• inductive step (implication): $P(k) \rightarrow P(k+1)$ 5. $P(1) \rightarrow P(3)$ 2, where P(3) 4.5 P(3)

Example: (practice 7, or ``Gauss's theorem'') Prove that, for any natural number $\frac{1}{n} + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

$$\overline{n_1}$$
1+2+3+...+ $n = \frac{n(n+1)}{2}$

Example: Exercise 34: Prove that $2^{n-1} \le n / for n \ge 1$.

A second (and seemingly more powerful) form of induction is given by the Second Principle of Mathematical Induction:

$$\left. \begin{array}{l} 1. \ P(1) \, \text{is true} \\ 2. \ (\forall k) [P(r) \, \text{true for all} \quad r, \\ 1 \leq r \leq k \rightarrow P(k+1) \, \text{true} \, \end{array} \right\} \rightarrow P(n) \, \text{true for all posit}$$

This principle is useful when we cannot deduce P(k+1) from P(k) (for k alone), but we can deduce P(k+1) from all preceding integers, beginning at the base case.

Example: Exercise 64b, p. 109.

Each of these two principles is equivalent to the **Principle of Well-Ordering**, which states that every collection of positive integers that contains any members at all has a smallest member.

Example: Prove that the first principle of induction implies well-ordering.

A Final Example: The prisoner's last request (finite backwards induction!)

Wed Feb 2 18:08:54 EST 2005

Prive:
$$1+2+...+n = \frac{n(n+i)}{2}, n = 31$$

By induction:

Anchor, or base case: check for $n=1$

LHS: 1

RHS: $\frac{1\cdot(1+i)}{2} = 1$

Inductive step: Assure that the statement is true for k ; show that it from for $k+i$ [$P(k) \rightarrow P(k+i)$]

[Where $P(k)$: $1+...+k = \frac{k(k+i)}{2}$]

Consider

$$1+2+...+k+(k+1)$$

By assumption

 $1+...+k=\frac{k(k+1)}{2}$, so

 $1+...+k+(k+1)=\frac{k(k+1)}{2}+(k+1)$
 $=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$
 $=\frac{(k+2)(k+1)}{2}$
 $=\frac{(k+1)((k+1)+1)}{2}$

So $P(k+1)$ is $+cne!$

Thus

 $1+2+...+n=\frac{n(n+1)}{2}$, $n \ge 1$

by induction.

$$H_{n+1}$$
: Write out

 $P(k+1)$;

 $1+2+...+k+(k+1)=\frac{(k+1)((k+1)+1)}{2}$

#34 p106 Pare: 2n-1 ≤ n! for ~3/ By induction: Anchor : n=1 LHS: 21-1 = 20 = 1 RHS: 1! = 1 Inductive step: P(k) -> P(k+1) 2 h-1 5 k! $2^{(k+1)-1} = 2 \cdot 2^{(k-1)} \leq 2 \cdot k \leq (k+1) \cdot k \leq 1$ Conside ; for h 31 2 (k+1)-1 $\leq (k+1)\cdot k! = (k+1)!$ The proposition is true by induction. = (k+1) · k! $P(h+1): 2^{(h+1)-1} \leq (k+1)!$

2h