Section 3.1: Sets

February 16, 2005

Abstract

This section, the only section we consider from Chapter 3, simply gives us some basic vocabulary and notions of sets that we will need when we get to Boolean algebras later. It also includes some really interesting examples of ideas from set theory (e.g. different aixes of infinite sets – did you know that infinity comes in infinitely many different sizes?).

1 Notation

A set (call it A) is loosely a collection of objects.

Capital letters denote sets, and \in denotes inclusion in a set, so that $x \in A$ means that x is a member (or element) of a set, and $x \notin A$ means that x isn't a member.

Sets are unordered: the order in which the elements are listed is unimportant.

We use predicate logic to determine when two sets are equal:

$$A = B \iff (\forall x)[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

The notation for a set whose elements are characterized by possessing property P is

$$S = \{x | P(x)\}$$

and is read "S is the set of all x such that P(x)"

One curiously useful set is the empty set, denoted \oslash or $\{\}$.

Some important sets of numbers:

N The natural numbers

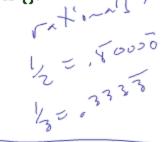
Z The integers

Q The rational numbers

I The irrational numbers

R The real numbers

 \mathbb{C} The complex numbers



Example: Practice 3, p. 165

A=

2 Relationships between Sets

A is a subset of B, denoted $A \subseteq B$, if

$$(\forall x)(x \in A \to x \in B)$$

and A is a proper subset of B, denoted $A \subset B$, if

$$(\forall x)(x\in A \to x\in B) \wedge (\exists x)(x\notin A \wedge x\in B)$$

Example: Practice 6, p. 166

Theorem:

$$A = B \iff (A \subseteq B \land B \subseteq A)$$

3 Sets of Sets

Power Set: Given set S, the power set of S, denoted $\wp(S)$, is the set of all subsets of S. (Note that S and \oslash are elements of the power set of S.)

Example: How big is the power set of a given set? (Practice 9, p. 168)

$$\beta = \{a, b\}$$
 $P(s) = \{5, \{a\}, \{b\}, \emptyset\}$
 $S = P(s) = \{5, \{a\}, \{b\}, \emptyset\}$
 $P(s) = \{5, \{a\}, \{b\}, \emptyset\}$

4 Binary and Unary Operations

We can create **ordered pairs** of elements of a set. From $A = \{1,3,4\}$ we can create the ordered pairs (1,3) and (3,3), for example. Now the order of the elements is important!

Question: How many ordered pairs are there if we have a set with n elements?

Definition: \circ is a binary operation on a set S if for every ordered pair (x,y) of elements of S, $x \circ y$ exists, is unique, and is a member of S.

Definition: \circ is well-defined if $x \circ y$ exists and is unique.

Definition: \circ is closed if $x \circ y \in S$.

Three ways to fail to be a binary operation on S:

- 1. there are pairs for which $x \circ y$ fails to exist;
- 2. there are pairs for which $x \circ y$ gives multiple different results:
- 3. there are pairs for which $x \circ y$ doesn't belong to S.

Definition: a unary operation on a set S associates with every element x of S a unique element of S.

Example: Practice 12, p. 170

5 Operations on Sets

Given a set S of elements of interest (the universal set), we may want to operate on various subsets of S (that is, elements of $\wp(S)$). For example,

Definition: Let $A, B \in \wp(S)$. The union of A and B, denoted $A \cup B$, is given by $\{x | x \in A \underline{\vee} x \in B\}$. The intersection of A and B, denoted $A \cap B$, is given by $\{x | x \in A \land x \in B\}$.

These are examples of binary operations on the set of power sets of a set.

Venn Diagrams are useful tools for considering the notions of union and intersection. The diagrams in Figures 3.1 and 3.2 (p. 171) illustrate these notions "pictorially".

Definition: For a set $A \in p(S)$, the complement of A, denoted A', is $\{x|x\in S \land x\notin A\}.$ ': P(5) - P(5)

Example: Practice 14, p. 171: illustrate A' using a Venn Diagram.

Definition: For set $A, B \in \wp(S)$, the set-difference of A and B, denoted A-B, is given by $\{x|x\in A \land x\notin B\}$.

Definition: For set $A, B \in \wp(S)$, the Cartesian product (cross product) of A and B, denoted A X B, is the set of all ordered pairs, and is given by

$$A \times B = \{(x,y)|x \in A \land y \in B\}. \qquad A \times \beta$$

Example: Practice 15, p. 172: illustrate A - B using a Venn Diagram.

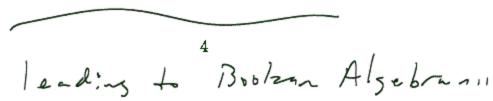
Set Identities 6

We will encounter the following "Set identities" later in the context of Boolean algebras:

1a. $A \cup B = B \cup A$	1b. $A \cap B = B \cap A$	commutative prop
$2a. \ (A \cup B) \cup C = A \cup (B \cup C)$	$2b. \ (A \cap B) \cap C = A \cap (B \cap C)$	associative proper
$3a. \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$3b.\ A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$	distributive prope
$4a.\ A\cup \oslash=A$	$4b. \ A \cap S = A$	identity property
5a. $A \cup A' = S$	5b. $A \cap A' = \emptyset$	complement prope

Notice the "dual" nature of the properties: it seems that the operations of \cup and \cap have a lot in common!

Question: What correspondence do you observe between these identities and those of wffs with the logical connective \wedge and \vee ?



7 Countable and Uncountable Sets

As an interesting application of set theory, we will now demonstrate that there are various sizes of infinity!

The natural numbers comprise the smallest infinity, a denumerable or countable infinity.

We prove that two sets are of equal size (even if infinite!) by creating a one-to-one correspondence between the two sets. If such a correspondence exists, then the two sets have the same size.

Theorem: the rational numbers are denumerable.

Theorem: the real numbers are not denumerable.

Theorem: the power set of a set S is always larger than S (punch line: there is always a bigger infinity than the one you already have).

Proof: By contradiction. Consider $f: S \longrightarrow \wp(S)$ a one-to-one correspondence between S and $\wp(S)$. That is, every set of $\wp(S)$ is represented by an element of S. But

$$A = \{x \in S | x \notin f(x)\} \notin f(S),$$

and yet $A \in \wp(S)$. This is a contradiction.

Practice 3:

$$A = \{ \times \{ \times \in M \text{ and } (\forall y) (y \in \{2,3,4,5\} = x \ge y) \}$$

 $= \text{the set of notices} 5 + np!$
 $= \{5, 1, 7, 8, 9, \dots \}$
 $B = \{ \times \{ (\exists y) (\exists z) (* y \in \{1,2\} n \neq \in \{2,3\} n \}) \}$
 $= \{3, 4, 5\}$

M cover the Q, but

NCQ

So Pey must have the same size

or Cardinality.

Reoren: the reals are larger than
the naturals.

By contradiction.

Assume we have a mapping of ,
the naturals onto the reals:

1 - 0 = 0.00000

7 - 1 = 3,19,592...

3 - 52 = 1.41 M21.

4 -> e = 2.718[28.,,

5 - 1,73205...

.48844 ···· ER

That's not on the list

That's a contradiction.