Section 3.1; Sets

February 16, 2005

Abstract

This section, the only section we consider from Chapter 3, simply
givea na some baalc vocabulary and notions of sets that we will need
when we get to Boolean algebras later. It sleo includes some really
interesting examples of idess from set theory {e.g. different sizes of
Inflnite sets — did you know that infinlty comes in infinitely many
differant. sizes?).

1 Notation

A set (call it A) is loosely a collection of objects.

Capital letters denote sets, a.nd@denﬂtes inclusion in a set, so that € A
means thet « is a member [or element) of a sef, and .."".{% 4 means that =
isn't a mernber.

Sets are unordered: the order in which the elements are listed is unimportant.

We upe predicate logic to determine when two sete are eqgual:
A=B +— (Vz)lz€eA—=zeB)A(z e B — g € A

The notation for a set whose elements are characterized by possessing prop-
erty P is

8 = {=|P(z)}
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and is read “S is the set of all x such that P(z)”

One curiously useful set iz the empty set, denoted © or {}. ;
Some important sets of numbers:

st I~
N  The natural numbers

Z The integers |, = _
Q@ The rational mumbers “2 ~ ’-;;
[ The irrational onmbers . A3
R The real numbers n© ¢
C The complex mmbers —— -

Exexople; Practice 3, p. 165 fr=

2 Relationships between Sets

A is 3 subset of B, denoted 4 C B, if
(VelizEA—=TER)
and A is a proper subset of B, denoted A C B, if

(Vrlz e A= e B)A(Tz)iz ¢ AAz € B)
— e

Exarople: Practice 5, p. 166

Theorem:
A=B «— (ACBABCA)

3 Sets of Sets

Power Set: Given set S, the power set of S, denoted g@(5), is the set of all
subsets of §. (Note that S and @ are elements of the power set of 5.)

Exsrople: How big is the power set of a given set? (Practice 9, p. 168)
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4 Binary and Unary Operations

We cen create ordered pairs of elements of & set. From A = {1,3,4} we
can create the ordered paire (1, 3) and (3, 3), for example. Now the order of
the elernents is important!

Question: How many ordered pairs are there if we have a set with n ele-
ments? s

1
Definition: o is a hinary operation on a set S if for every ordered pair

(z,%) of elements of 9, « o ¢ exists, is unique, and is a member of
1-.---"'"-* —_—
Definition: ¢ is well-defined if z o y exists and is unique.
.---—--r-"'"_"_""\-q________"“____
Deflnition: cisclosed if zoy € 4.

Three ways to fail to be a binary operation on 5:
1. there are pairs for which & o y fails to exist;
2. there are pairs for which z o ¢ givea multiple different results;

3. there are paire for which x o y doesn’t belong to 5.

Deflnition: a unary operation on 8 set & associates with every element z
of § a unique element of 5.

Exzmople: Practice 12, p. 170

5 Operations on Sets

Given a set S of elements of interest (the universal set), we may want to
operate on various subsets of S (that is, elements of g(S)). For example,

Definition: Let A, B € p(S). The union of A and B, dencted AU B, is
given by {z|r € A¥ z € B}. The intersection of A and B, denoted AN B,
is given by {z|z € A Az € B}.
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These are examples of binary operations on the set of power sets of a set.

Venn Diagrams are useful tools for considering the notions of union and
intersection. The diagrams in Figures 3.1 and 3.2 (p. 171) illustrate these
notions “pictorially”.

Definition: For & set 4 € p(S], the complement of A, denoted A, is
{zlz e S Az ¢ A} fﬁ' —s P/s)

Example: Practice 14, p. 171: ﬂlu&trate: A’ using & Venn Diagram.

Definition: For set A, B € p(5), the set-difference of A and B, denoted
A— B ispivenby {zjre AAx ¢ B}

Definition: Forset A, B € p(5), the Cartesian product (cross product)
of A and B, denoted A X A, is the et of all ordered pairs, and is given by

AX B={{(z,y)|lzre Arye B} ,ﬂrxg

Example: Practice 15, p. 172: illustrate A — B nsing, a Venn Diagram.

6 Set Identities

We will encounter the following “Set identities™ later in the context of Boolean
algebras:

commutative prof
asspciative proper

le. AUB=BUA 1 ANB=8BNA

2a. ([AUBYUC=AU(BUC) 2. (ANBNC=An(BNC)

3. AUBNC)=(AUB)IN{AUC) 3. AN(BUC)=ANBIU(ANC)
4do. AU =A 4. ANnS=A

Sa. AUA =5 5h ANA' =

Notice the "dual” nature of the properties: it seems that the operations of
lJ and M heve a lot in commeon!

Question: What correspondence do you observe between these identities
and those of wifs with the logical connective A and V7

//"—_\\_-__//.—_
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7 Countable and Uncountable Sets
As an interesting application of set theory, we will now demonstrate that
there are varions sizes of infinity!

The natural numbers ¢omprise the smallest infinity, a denumerable or
countable infinity.

We prove that two sets are of equal size (even if infinite!) by creating & one-
to-one correspondence between the two sets, If such a correspondence
exists, then the two sets have the same gize.

Theorem: the rational numbers are denumerskble.
Theorem: the real numbers are mot denumerable.

Theorem: the power set of a et S is always larger than 8 (punch line: there
in always & bigger infinity than the cne you already have).

Proof: By contradiction. Consider f: § — p(5) a cne-to-one correspon-
dence between 9 and @(5). That is, every set of p(5) is represented by an

element of 5. But
A={z € S|z ¢ f(=)} ¢ f(5),
and yet A € p(S). This is & contradiction.
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