Section 5.1: Graphs and Their
Representations

February 16, 2005

A bstract

We are introduced to definitlons of graphs, varlons kinds of grephs,
cheracteristic featurss of grephs, and even & few theorems ebhout grapha
{for exemple, we learn when two graphs are the same, or isomorphie,
even when they look strikingly different).

We then teke a look st planar graphs (in particular at Fuler's
formula), and eamputer representations of graphs (adjacency matrices,
adjeceney ligta).

1 Definitions

A groph i3 defined loosely as a get of nodes, and & set of ares which connect
some of the nodes.

More formally, we have the following
Definition: s graph is an ordered triple (N, A, g) where

N = & nonempty set of nodes, or vertices
A= & set of arcs, or edges
g = a function sssociating each arc & with an urerdered pair {x,y} of nodes.



x and y are the endpoints of the arc. gis a fimetion g: A — {{z, g4}z e N
and y € N1.

Exarnple: Practice #1, p. 342,
Deflnition: a directed graph is an ordered triple (N, 4, g) where

N = & nonempty set of nodes, or vertices
A= & set of ares, or edges
g = a function sssociating each arc & with an ardered pair (x,y) of nodes.

so g is a function g : A — {(2,¥)|zr € ¥ and 4y € ¥}. A-“-'..“.._. g A~
I D

Exarmple; Exercise #1, p. 361. b (L3
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2 Examples of graphs in action (p. 344)

¢ Road map of Arizona

Dzone Molecule

“data flow disagram” for state auto licensing office

“star topology” for network

neurel network

IMap of Rabies-infected towns in Connecticut
3 Graph Terminology

Exzmople: Create a graph oo a 4x6 cerd. Some of you should make rather
ordered graphs: others might think of very strange graphs.
Lets use a graph terminclogy handout to classify your graph.

Exarnple: Exercise #2, p. 362.



4 Special Graphs C
By A, we will understand the sirnple, complete graph with # nodes.

Example: Exercise #9a, p. 362: Draw K.

A bipartite complete graph K., , is a graph of N nodes which break i
two groups, N1 and N, of size e and n respectively, with the pro
two nodes » and g are adjacent <= r € N, and ¥ € ;.

Example: Exercise #5b, p. 362: Draw &, 77
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5 Isomorphic Graphs %

The idea of isomorphism is that two structures can be “morphed’
other {they sre in some sense identical). Qur objective, in general, i to figure
out the “morphism” (isomorphiem - same forml).

Exsmple: Look at Figure 5.17, p. 35[] can you morph the two graphs
together?

Definition: Two graphe {(N;, A;,4 ) and (V;, As, ¢2) are isomorphic if
there are bijections {one-to-cne and onto mappings) f; : Ny — N; and
fa i Ay — Aj such that for each arc a € 4, g1(6) = {z,y} < gmlfula)] =
{fi{z), fi{e)} (replace braces by perentheses for a directed graph). 3 Eﬁﬂj { ) ])7

Example: Practice #7, p. 350. If yon menaged to morph the two graphs
in Figure 5.17, then you should be able to “see" the rest of function fs.

Theorem: Two simple graphs (N, 4;,41) and (N3, A, go) are isomorphic
if there is & bijection F: N — N; such that for anv nodes n; and n; of Ny, 51{.{: { q!:]}:
7; and ny; are adjacent <= f(n;) and f{n,) are adjacent. !

[£0) 4 ]
Example: Exercise #11, p. 364.
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Here are some tegts for determining when two graphs are mot isomorphic:
1. The graphs don't have the same number of nodes.
Fiag=e
rat, | .-Q'{Aulll-) 3 t 1 3
N T C"‘"-i-' -} f—i
{ .
% . o cﬁL - ‘8;.
3 b Gy = &
{ | € G 8
S| e




The graphs don’t have the same mimber of ares.

One graph is connected and the other isn’t.

One praph has a nede of degree £ and the other doesn'™.
QOne graph has parallel arcs and the other doesn’t.

One graph has loops and the other doesn't.

A R

One graph has cycles and the other doesn’t.

Thig list is not complete, however: sometimes things get trickier than this
(a8 shown in Example 12). / 5L

Exzaople: Exercise #8, p. 362.

6 Planar Graphs

A planar graph is one which can be drawn in two-dimensions so that ite arcs
intersect only in nodes. “Designers of integrated cirenits want all components
in one layer of a chip to form & planar graph so that no connections cross.”
(p. 352) r

Examople: Revisit #11, p. 363. @

Enler's Formula for simple, connected planar graphs states that -
2 .5+

n—a+t+r=2 Ve a + . = 2
where 7 is the mumber of nodes, @ is the number of arcs, and r is the number
of regiong {including the infinite region gurrounding the graph).

Hey! What's induction doing in here? Euler’s formula is proven by induction,
on a, the number of arcs, and a consideration of cases {node of degree 1; no
node of degree 1).

Note: about Euler (Born: 15 April 1707 in Basel, Switzerland Died: 18 Sept
1783 in St Petersburg, Russiz). He was so prolific that his work is still being
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compilerd. He went blind in his old age, and became #ven more prolific! He
was an incredible calculating machine,

Example: Revisit #£11, p. 363, for a check.

The following theorem provides some estimates on the relationship between
the number of ercs and nodes that a planar graph may possess:

Theorem: For a simple, connected, planar graph with # nodes and a arce,
1. If the plensar representation divides the plane inte r regions, then

n—a+r=2

2, if » = 3, then
& < 3(r—2) [L;"-.E'- 7(t-2) = 12
3. If » = 3 and there are no cycles of length 3, then K:L e
(PR~ o
a<2(n—2) f

From this theorem w= can deduce that Ky is not planar, since it has 5 nodes,
and 10 arcs, and 10 >3- 3.

Also from this theorem we can deduce that Kj; is not planar, since it has 6
nodes, and 9 arcs, and oo cycles of length 3: 9> 2- 4,

Exarmple: Exercise #£22, p. 365. P
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7 Computer Representations of Graphs

We want to examine two different representations of graphs by a com-

puter:
» the adjarency matrix, and

» the adjacency list.



A matrix is basically a spreadsheet: e rectangnlar dete set of mumbers

indexed by rows and eolumns.

An adjacency matrix for & graph with & nodes is NaN, where the rows
and colummns of the matrix represent the wertices. If the graph is undirected,
then the element ai; of the matrix is nonzero <= nodes i and j are
adjecent; if directed, then the element ey of the matrix is non-zero <=
there is an erc from node ¢ to node j.

In our textbook, the element of the matrix a;; = p, the number of arce d
meeting the criteria above. “

Example: Practice #16, p. 358.

For an undirected graph the adjacency matrix is symmetric {(which means L{
that we can reduce storage by about half); for a directed graph, the matrix
may well be unsymmetric.

Let’s look at & nice web papge, with an example of a directed graph

Example: Exercise #33, p. 366. /
# This 1990 commmting patterns page mipght be modelled as & directed,
weighted graph. lts edjscency matrix would be exactly the mmnerical C
portion of this teble, and it would be s full matrix. NEER R
» A map of Rabies-infected towns in Connecticut gives rise to an undi- -; ° ; J T : T T
rected graph. The towns are nodes, and an arc ie created if two towns 1 88 gy
are adjacent. This will lead to a sparse symmetric adjacency matrix, f';'_ ? - ?

however, as very few townes ere adjacent to any particular town. . 18" ¢

[
An adjacency list might be a better storage method for graphe with - .},T,-M-}'r [ ®
relatively few arca: we effectively store only the non-zerc entries of the adja-
cency matrix, in a linked list:

Exsmple: Exercise 46, p. 367.

The redundancy in drawing the adjacency list for an undirected graph is
evident. This is eliminated for a directed graph:

Exzoople: Exercise #4547, p. 367,
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