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Section 5.3: Decision Trees

Abstract:

Decision trees are defined, and some examples given. Binary search trees store data conveniently for searching
later. Some bounds on worst case sceparios are established.

Decision Tree Definition and Terminology

Definition: a decision tree iz a tree in which

» internal nodes repregent acticns,
s arcs represent outcomes of an action, and
» leaves represent final outcomes.

Examples of decision trees in action

= A decision tree for treesl For example, the Identification of Common Trees of Iowa.

e Figure 5.51, p. 387 Results of tossing a coin 5 times, no two heads in a row (binary decision tree)
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s Figure 5.52, p. 383 Sequential Search on 5 elements (binary tree)
Exercise #1, p. 3.

¢ Figure 5.53, p. 389: Binary Search on a sorted list (ternary tree, although it appears binary since those
leaves corresponding to equality have been suppressed)
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Ivotice how clumsy this tree looks, since a power of two was uscd (rather than | less than a power of

[
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o Figure 556, p. 393 Sortng a list (binacy tree, provided distinet list elements)

Practice 24, p. 390.

Lower Bounds on Searching

In particular about binary trees:

. : Ad+1
1. Any binary tree of depth d has at most £

most nodes per depth.)

= inodes. (Proof: look at the full binary tree, as it has the

2. Any binary tree with m nodes has dﬂpﬂld = |logm, , where MT is the floor function, meaning the
greatest integer less than or equal to x. Again, the proof can be motivated simply by looking at the full

binary tree situation:
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d. Hence, in the case of powers of 2, &

l'able: Adding one more node bumps the depth up 1, so that if there are 2% nodes, the depth is (at least)

------ ogm

A more formal proof is by contradiction and interesting (p. 390):

o Assumed < |logm]. thend < [logm] — 1,

o From fact 1 (above the table),

m < 2% — ] < plkemImIH _ ] <ol ) = — I

L3 contradiction, d :_} UCJE mJ .
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These facts lead to the following

Theorem {on the lower bound for searching): Any algerithm that solves the search problem for an »-element
list by comparing the target element x to the list items must do at least | {98 ”J + Eﬂm‘n;mrimns in the worst

Case.

The ’+1" comes about becanse a decision tree representing the search problem has leaves which report the
outcome of the search: hence itg depth is 1 more than the depth of a tree containing only the internal nodes
(representing the comparigons themeelves). It's actually the arcs we should be counting....

If, in its worst case, an algorithm does at most this lower bound on worst case behavior is an optimal
algorithm in its worst-case behavior. Binary search is optimal (as seen, for example, in Practice 24).

Binary Search Tree

The Binary search algorithm required a sorted list; if your data is unsorted (it may be changing dynamically in
time, if you are updsating a database of customers, for example), you can populate a tree which approximates 4
sorted list, and then use a modified search algorithm (binary tree search) to search the list. A binary search
tree is constructed as follows:

» The first item in the list is the root:

» Successive items are inserted by comparing them to existing nodes, from the root node: if less than a
node, descend to the left child and iterate; if greater than, descend to the right child.

» [f, in descending, there is no child, you create a new node.
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Practice #25, p. 392.

The binary tree search algorithm works in the same way as you'd imtroduce a new node, only the algorithm
terminates if

» the element is equal to a node, or
s the element is unequal to a leaf of the binary search tree.

In this case the binary search tree serves as the decision tree for the binary tree search algonthm.

Exercise #9, p. 395,

What's the worst way to enter the data into a binary search tree, if one is seeking to create a balanced trea?

Sorting
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Examine Figure 5.56, p. 393:
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In this cage, we're sorting a three-element list using a decision tree. The author calls this a stupid algorithm
(actually, "' not particularly ashite"): why?

(Practice #26, p. 353. How would we modify Figure 5.567)

Assuming no equal elements in the list, then this is indeed a binary (rather than ternary tree, with = included).
In this case, we can also get a lower bound on sorting a list with # elements:

o 3
e There are 11! possible sorted lists, and there are at least that many leaves p ( F = TV%) (In Figure 5.56,

there are eight leaves, but cnly 6=3! different sorted lists).
* A worst-case final outcome mn the decision tree is given by the depth & of the tree.

* Since the tree is binary, F = 4 (the maximum number of leaves possible at depth d).

s Taking logs (hase 2), wegetlDEF <d . 1:‘rrf"I = | log p | , where I is the ceiling function, which
yields the smallest imteger greater than cor equal ta x.
» Hence, @ = | IOE 70|

This is the Theorem on the lower bound for sorting: that you have to go to at least a depth of | 108 78 | in the

worst case,

Exercise #23, p. 397 shows that this lower bound (| LO& 7 [} is on the order of 72 logn (as we discovered
for mergesort).
Exercise #15, p. 395.
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