Section 6.3: Shortest Path and
Minimal Spanning Tree Q

March 21, 2005

Absiract

Heveral alporithme are desrribed for tracing the ahartest path be-
tween two nodes for a simple, positively weighted, connected graph.
This is a simpler problem than the traveling saleeman problem, and
we might hope that a solution algorithm is available.

In additlon, algerithms for inding a minimal spanning tree are alao
described, which are useful for trimming a greph to s subgraph which
leaves all nodes connected, but eliminates “unnecessery” conmections.

Notice that aseveral of the algorithma we study in this section are
artually found in the exereise portion of the aection — you have to hunt
for them!

1 Shortest Path Algorithms

How might you find the shortest path between two nodes? Some gugpestions
might include

¢ Examining all paths (exhaustive] and choosing the shortest;
¢ Recursion.
We note that, if there are rn nodes, you need at most & path of length n — 1.

It is relatively easy to come up with algorithms to solve this problem, but of
course some ways are better than others. We'll look at a couple of standard
algorithme for carrying out this task.

1.1 Dijkstra’s Algorithm

Thia algorithm was first deseribed by Edager W. Dijkstra '. Here is & web-
besed exarnple of the workings of the algorithm {where there s no stated
destination node).

¢ Given tso nodes 2 and ¥ in a simple, connected, positively weighted
graph. We seek the shortest path from = to y (assume & non-directed

graph). -

..--""'-“
e Represent the graph by its adjacency matrix (with distances between
non-adjecent nodes set to o0) — meaning that they are non-adjacent.

¢ A settied node is one whose distance from z is known. [nitially, the set
of settled nodes is only 7N = {z}.

& We prow I N by adding in the next nearest node to 2 via those alveady
settled. When ¥ falls into ¥, we're done.

We keep track of two arrays, indexed by the nodes of graph ("
¢ a0 erray 4 indexed by the nodes z, of distances of z to &; and

» an array 7 indexed by the nodes z, of the node adjacent to a given node
z on the shortest path from z to & (so far).

When ¢ enters IV, we can use 5 to trace the shortest path.

Let’s look at an evample:
Exercise #3, p. 441

1Dijkstes wes the one responsible for the quote that “the quality of progranumers is &
decreading fimetion of the density of GO TO atatememta in the programa they produce”
{From & letter to the editer of Communications of the ACM, cirea 1968)

1.2 Other shortest path algorithms

The Bellman-Ford Algorithm {AnotherShortestPath, p. 442) operates
in a fashion similar to Dijkstra’s algorithm, only it finds the shortest dis-
tance from z to every other node as described in the book (one could add a

termination step, of course).

Each node keeps an eve on ite adjacent nodes:
¢ if they don't change, no change in node

» if they change, reevaluate based on the weight of that are.

Exercire #12, p. 443

Floyd’s slgorithm (the slgorithrm AllPairsShortestPath, p. 444) is simpler,
and stupid, but has the advantage that it produces the shortest distance
between any two nodes in the graph (however it does not produce the path
itself!). Sometimes this is desired, rather than the distance between any

gpecial peir. It too works with the adjacency matrix representation of the
graph {modified to contain co off the diagonal}.

It simply uses brute force to compare direct paths between & pair and indirect
paths between the same peir: we compare

Alg, k) + Alk, 5)
to A%, 7), to see if it’s shorter to gﬁﬁ?ﬁp
Exercise #15, p. 444,

2 Minimal Spanning Trees

Definition: A spanmning tree for a connected graph (7 is a non-rooted tree
containing the nodes of the graph and a subset of the ares of G A THINE
mal spanning tree is & spanning tree of lesst weight of a simple, weighted,
connected graph ¢,

Prim's algorithm is a simple one for constructing a minimal spanning tree
(these may not be uniquel):

« Pick a node at random (they all must figure in the spanning tree, and

it doesn’t matter where you start). This node is the start of your tree

T

» Follow the arc from the tree T to the nearest adjacent node, and incor- ¢
porate that arc and node into T (there may be ties - pick one). :

» lterate!

Exercise #20, p. 445,

Kruekal’s algorithm is an alternative method for generating & minimal span-
ning tree. 1t works by building up a spanning tree from the arcs, ordered
from smallest in weight to largest. The only reuann to reject & Bma.]ler arc

over & larger is if it creates a cycle.

)
Exercise #33, p. 445,
(7 i ?

A @
3 9 I3)3 €3,
CH’} Yy iz, 06,30, 3,39
60 bf *ﬂ;i?

[

L
37
q4e
7

4

{ 2 1 5 = '? { =2 -0
|l 3 le] a2 o o= e L s
1 & z »® [& o = 2
dil & o O § e m -
sI| 8 #» » 4 ° ¢ & |
. / o e w t © v =
3| o | ot =t o £ e I
Y L A 3 =4 ! « | g

RIRS10 I RE@/

A0 25 - 7 | = e TN = (1]

s ~ | I | l ! i (

J o3 5= 3| 2 - Twe§1 0

§ - 1y / c b J =

d o83 § » F I 4 =

o~ b e Ivelre, 6

A v a4 5 & F 1 4§

PO A B A IN={, 6,7

£ 0 35 ¢ F 1§ TN =

S 7 03 {1y ! {U??#‘lﬂ'”

A o Y T L @ 1!;_;-~ — .

f - ¢ 2 ¥ /1 oz ¥ JH#(G?’QJ}B;?J
5_#; ",4#"’"“{“

