Section 6.3: Details of the Shortest
Path Algorithms
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A bstract

Some examples are provided in gory detell.

1 Shortest Path Algorithms
1.1 Dijkstra’s Alporithm

Exercise #3, p. 441

In this case, we're nsing Dijkstra’s algorithm. We start with the adjaceney

matrix:
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The adjacency matrix serves the computer to indicate which nodes are adja-
cent, to which others.



Now, we're going to keep track of the “rettled nodes®, starting with the initial
node (TN = {1}]). We will also keep track of their distances to node 1, and
we'll keep a list of their nesrest neighbor along their shortest path beck to
1. They start this way, therefore:
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Note that once a node is settled, its entries won't be changing,
The next closest node is G: it is one unit away from 1. Any other node mnost

he further away, as to go directly from I requires more than 1 unit, and

passing by node 6 would still be farther than one unit {one nnit and change).
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Since node 6 has neighbors {1, 5, T}, these are the only nodes whose distances
eould be updated. Node 1 will not change, however, as it is already settled
in for its long winter’s nap. Looking the others over, we see that there are
some improvements to both 5 and 7;
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We now settle 2, with neighbors {1, 3, 7}, of which only 3 and 7 can change:
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Node 3 sticks, but 7 can be reached in only 4. This makes it our next settled
node, with neighbors {2, 6,8}: only 8 can still change! And it does:
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We now take 3 ar our next settled node, although the choice is arbitrary
(both 3 and & are at distance 5). Nade 3 has neighbors {1,2,4, 8}, so only 4
and & can change (and only 4 doea):
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Now node & is settled, whose neighbors are {3,5, 7}, Only 5 can change, and
it does:
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Now, if our algorithm is amart, it will decide ties in favor of the destination
node. So let's assume a smart algorithm: then the next settled node will he
node 5, gur final destination. The srrays end, then, as
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which indicates that the shortest path between nodes 1 and 5 has length 6,
and the path is given hy the s array: 5's adjacent neighbor on the path to 1
58 85is7; T'sis 2; and 2's is 1. Hence the shortest path is

5>8—->7—2>2—>1

1.2 Bellman-Ford Algorithm

Thia algorithm alleees us to find the shortest distance from the initial node
to all other nodes, and is hence a generslization of Dijkstre’s algorithm (as
presented in our book).

We're going to compute shortest paths of 1 arc, 2 arcs, ..., (n-1) arce, which
are the longest pathe we would poesibly use to get to any node from 1 {oth-
erwise we would be visiting & node twice, which wounld be foolish!).

Exercise #12, p. 443



Fortunately we're nsing the same graph, so the adjarency matrix is essentially
the same. We start with the adj}acenny matrix
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with zeros down the diagonal in place of the infinities before.

We essentislly add each row of the adjacency matrix to the current d vector,
and check to see if we get any improvement. If so, we've found a shorter
peth! d contains the shortest distances determined so far from the initial
node to every node in the graph.

Onece again we're going to keep track of the distances fom the initial node,
starting with the initial node 1. We will also keep track of their nearest
neighbor along their shortest path back to 1. They start this way, therefore:
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_Ouly when a node changes will Wﬂ@ﬂ We now ask sbout
paths using two arcs: what are the shortest distances for each node from
node 17 In order to answer this question, you need to examine each node's
neiphbors {(use the adjacency matriv!), and check their nearest distances.

Again, if these neighbor distances have not changed from one step to the
next, then the distance to the given node will not change either!
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At the second iteration, paths of two arce, our distances look like this:




For example, if we add the fonrth node’s row of the adjacency matrix to the
original € array, we get
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which says that we can get, to node 4 in 6, using node 8. We do the same for
all the other nodes (other rows of the adjacency matrix).

lterate: we again step through the rows, checking the neighbors of each node
against their newly calculated values to see if there’s any improvement. Qnly
for node 8 do we see any change:
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Node 8's only neighbors are E,In T}, so only these can change in the next,
step: we use their rows from the adjacency matrix, and try again:
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Ounly 5 changed. lts neighbors are {1,4,7,8}, but none of them change.
Hence we are done! There ¢can be no further change.

The d array gives us the nearest distances to 1 for each node, and their paths
can be calculated exsctly as for Dijkstra’s slgorithm.
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1.2 Floyd’s Algorithm

Exercise #15, p. 444,

The output below, from a “smarter implementation” in lisp that 1 wrote,
shows the distances sbove the dinponal, and the original adjrrency matrix
below the diagonal.
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Table 1: ImtlaI adga.cent:y matrix
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Table 2: After the sweep with k=0 (for x - by indewing from 0, we'll have k
line up with the node lakel for the rest of our iterations).
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: After the sweep with k=1
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Table 4: After the sweep with k=2
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Table 5: After the sweep with k=3
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Table 6: End matrix, after the sweep with k=4 (for y), with the shortest
distances above the diagonal, and the original adjacency valnes below the
diagonal.
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