Section 6.4: Traversal Algorithms

March 23, 2006

Ahbstract

We've already examined some tree traversal algorithmes {pre-order,
inorder, post-order), and consldered their relathve advantages. We
now went to open the notion of traversal to all graphs (we certainly
might want to write out the nodss of an arbitrary graph!}. We examine
end compare two recursive methods: depth-first and breadth-first.

Note: we're only covering 6.4 through Practice 16 {p. 453).

Imporitant Convention: for the problema, we should stick with the
convention that, given a choice, we should choose nodes in alphabetic
order. Thir assures that we all end up with the same answer, which
maximizes sanity....

1 Depth-First versus Breadth-First Traversal

1.1 Depth-First

The ides behind the depth-fimt strategy is to burrow down inte the graph,
rather than apread out a8 che will in a breadth-first traversal. The depth-first
algorithm is recursive. Have a look at the algorithm on p. 448.

1. Pick {mark and write) the start node;

2. Find its neighbor nodes {ordering them lexigraphically, again for san- ('ru"\:._‘

ity's sakel); —

.]
{ A

3. For each unmarked neighbor z, DepthFirst{G,x]

Exercise #3, p. 456

1.2 Breadth-First

Examine the breadth-firat algorithm on p. 450. Tt uses & queue to traverse
the nodes, popping elements off the queue as all of their adjacent nodes are

alpo marked.
1. Pick (mark, write, and enquene) the start node; then, while the queue

is non-empty,

2. Find the front-of-the-queue’s neighbor nodes (ordering them lexdgraph-
ically to be kind});

3. Mark, write, and enqueue those which are a8 yet unmarked;
4. Dequeue the front element of the quene;

5. Continue until the queue is empty.

Exercise #13, p. 457

2 How do these graph traversal algorithms
behave for trees?

Look at an example (try a binary tree).
& Depth-first equates to preordering:

¢ Breadth-first does just what you’d expect! From the root on down, by

Lﬁi

a
-
1 j;'
b
¢ AL
. K
3 /;’/

3 Depth-First Application

These types of traversal slgorithms are useful for operating on graphs, For
example, I wrete this lisp code to find the shortest distance between two
nodes z and y, using a depth-firat algorithm (recursively). The algorithm is
not particularly good; it was implemented because a student brainstormed it
in & previcus class, and it wae a neat (albeit not particularly efficient) idea.
1t worke like this:

» Start at the begin node;

+ Find all adjacent nodes;

» Find the shortest distance from each of those nodes (recursively) to the
destination node using a trimmed graph in which the start node has
been eliminated (marked), and marking each one a8 finished once its
shortest distance has been determined.

Note that 1 used the adjacency matrix representation, which is good for “full”
graphe, but wasteful for paree ones.

Th test my algorithm, 1 ran it on the graph of Exercise #15, p. 444 for every
pair of nodes (to compare the resnlt with Floyd's algorithm). You can try
out this procedure using this this web script.

