1

In Section 7.2, we discovered that there is a relatively simple way of passing
back and forth between representations of a truth function (table}, boolean
In particular, we saw that, given a truth
table, it is simple to construct a Boolean expression (the canonical form)
which i8 a snm of producte. Unfortunately, this expression is often much

expression, and logic network.

Section 7.3: Minimization

April 4, 2005

Abstract

The ward “minimization™ in the title of this section refers to our
pursult of simplifled but equivalent Boolean expressions, which we
think of as representing hardware {logle networks). Qur objective is
to start with the canonical form derived from a truth tekls, end reduce
it to e simpler expression {generelly also a sum of producta), which is
eagier (cheaper, faster) to implement in hardware.

We axarmnine two different techniques for accomplishing this: the
Karnaugh map, and the Quine-MeCluskey procedure. The first is ass-
tm;;ﬂeuaing, but Hmulem veriehles; the second
can be genersalized to handle any number of variables, and can be
eoded up in general relatively essily.

Overview

more complicated than necessary - it can be simplified, or minimized.

In thie eection, we consider two methods for desling with truth tables, and
turning them into simple Boolean expressions. The Karmaugh Map turns
a truth table into an equivalent “matrix”, which we operate on; and the

1

Quine - McCluskey procedure plays a similer pattern-matching game, making
selective deletions to trim down the canonical form te a manegeable Boolean
EXpression.

2 Simplification and the Karnaugh Map
2.1 Simplification Rules

A couple of simple equivalence rules make our life easy: @ X |
Y ¢ -
wy+oy=y (1) , 7
z+ay=z+y (2) Ylo| D

We demonstrate the utility of these two rules in the following simplification:

Exsmple 17, p. b{). Consider the cancnical form given h@ I

E = 5yxo73 + 713313 4 7 a7
We demonstrate how rule (1) works as follows:

B = za{t123 + 21 %3) + 21 202h = 2o + 2])23 + 22025 = 2a2s + 2ixa2y 2+ i
Now we're get up for the use of rule (2): XAy =

E=:ﬂﬂi‘33+$;_:ﬂg$@=m2[ma+ﬁxf3] ;:.-}.i_?g},'_‘_‘}, =
x‘?’"‘"‘#\fl - i?l-h KI)J -
To dermonstrate rule (2) above, we get to use that wacky distributive rule;———
* & b

E = my(xs + 2175) = @al(zs + 21)(ws + 75)) = za2(ws + 31) = %axs + T3]

= XL-[K.B -+ 5 ,’\)
2.2 Karnaugh Map Examples

Here's a two-variable example (XOR - from the half adder of last time):
T1Tp + T Tg

Example 17: ©1Z3Ty + & TaTs + T Tah

¥’ [! (4 ! '+-' ‘ﬁl ‘;
g | Eyxh | aiay | xlx %, ¥
I3 1:}

\LD

While the position of the boolean varigbles in the 2x2 example above is
arbitrary, not so for the column labels of the 3x3 example above: notice that
there is a single change in the Boolean expressions as you read across the
top. Note also that the far left and right expressions are slsc only different

by one change. We could wrap this table and put it onto a cylinder.

A four-variable example.

A .3%-4

\ +
'ii i‘-{}

@ y
b TR

%‘)

(l 4 1 ‘1‘1}1

Tyry | ;ah | Thah | ¥ixe
Loy ‘D
g
e
ahr
.
A _-!3.-4 \J.J

In this case, there is nothing arbitrary about either row- or colmun-labels:
vou could wrap top to bottom and right to left, which means that this table
conld be wrapped onto a torus {or donut shape).

In this section we study a method for simplification, not just representation,
so how do we simplify?

&y j Iy ==t e -I"].:i'-g = T'a

X

i1

¥

| 1) | = @@ +aloy =)

.".I':'z
ak

Ty | 2 | = 1Ty + T18 + Fixe + 376 =1
F I
i 1

Check out this trick (idempotence);

o || = 2+ o) + B4 = 20 + m13h + (@) + hah) = 4 + b

Notice, however, that this is really the same as rule (2) abowve:
21Ty + 125 + 2135 = Ty (T2 + 25) + 22 = 2] + ozl =) 423

Example 1T: &1%3Ts +) TaEs + T4 Tads

73] 1 1|
Note that we need to wrap to do this one; furthermere see how mmch more
simply we simplify this expression then we did up top: we use idempotence,
then the simplification rule (1) twice {not needing the second).

There may be multiple simplifications of a Boolean expression:
Exercise #1, p. 512

We may nesd to look for quads, rather then pairs:

Exercise #4, p. 512

3 Simplification and the Quine-McCluskey pro-
cedure

ln this procedure, we do exactly the same thing as in Karnaugh, but we do
it without the matrix {or table). We search for those elements of the truth
table which differ by 5 single entry, and then reduce them.

We may have to do the reduction in several steps, as illustrated in Table 7.16,
p. 509. Part (c) of that tahle represents a column of four 1s in the Karnangh
map.

4
H-Lﬁff’p. |
N y X, . X, My K, ¥ K ¥y
Tlue Yo e+
T f 2 - i ¢
! L
o o

IR

e |
{all

"'""_H'R"‘x pmihihat saly
| o [esfi) 2°° —oi
h "T:“l"h‘ { oo - lI| &e (”"_1"'
R S o= ra
ln the end, we have to determine which of the esuitant products is necesasry

to recreate the initial truth table. We do this with a second type of table, -~ o

ag illustrated in Table 7.17, p. 520. This ir essentially a pattern-matching _ ...

table {we'll talk ahout these pattern-matches in onr disenssions of regular

expressions in section 8.2): each of the column label expressions (the criginal

product terms) is compared to the “delsted elements” of the result tables

(e.g. the produet 0010 matches both 0-10 and 06-). Y
Koy ¥y 1 K Ko b

Exercige 16, p. 514. oy L

Furthermore, it is sometimes easier to use the Quine-Mc{luskey preocedure

on the complement of the truth function, if the complement has fewer entries.

The downside is that we won't end np with a sum of products, but rather a

product of sums - if that bothers you!

Exercise 19, p. 915 (or Exercise 16 sbove, for a simpler example).

!) f
K Xy T XXy + % vy

— —_—

Yo, Yol sk N

¥, Xy

i

Ky ¥y

[f i
){;x;r_, + K;_?‘:.{

=

5| 1L

L
~+ :{I}{l Xy
; J")
! + X R Ky

vl ||

N
|
J

-

1

Il

