Section 8.2: Finite-State Machines
ESM

April 18, 2005

Abstract

We model a machine es e set of statea, inputa which lead to &
change in state, B clock to synchronize the machine world, and outputs,
which result from a perticuler stete. We nse tebles and graphs to
describe how the inputs relate to changes in stete and the outputa of
each gtate, then practice creating simple finite-stete machines.

Finite-state machines can be used to recognize input, and we will
look at the kinds of input that can be recognized, aa well as construct
the marhines that recognize piven inpnt. Furthermore, some marhines
are overly complicated, in that we can simplify them and get the same
operation. We will examine some ways in which we can “minimize” a
finite-state machine.

1 Finite-State Machines

Definition: A finite-state machine M is a structure [§,1,0, f., fo| where
The machine is initialized to start in state 85, and the machine operates de-
terministically {(meaning there is no rendomness associated with its operation
given & sequence of inputs).

We assume discrete times, synchronized by & clock, so that
fa(state(t,), inpui(l)) = state(t:1.)

and that
Ja(state(t:)) = output{t,)

1

Table 1: Elements of & hnite-state machine

=) fintte set of states of the machine

; input alphabet {finite set of symbaols)

: i) output alphabet (finite set of symbaols)

| fo | o Sx 1= S, the next-state function
W} fo 15 — O, the output function

We represent f, and f, by
¢ state tables (e.g. Table 8.1, p. 545)

e state graphs (e.g. Figure 8.1, p. 546)

A summary of these elements for Example 16, p. 545:

'\’f-j':
Table 2: Elements of finite-state machine of Example 14, p. 545. N .-F

o {-"u. "E--"".EI'
AN

Ty

Srzdt
N -
ot | 2T
I ﬁ——-iﬂl PN
|' ﬁlﬁ | 'h -si || II."I L2 T
.il s‘| | ; $? il !|l |r
i I Il
ll|ll. 5'I.)J_,I | f‘l.. f| .JII \ 11

Practice 35, p. 546. (Table from graph: first of all, what are |9, 1,0, f., f|

in this example?) -

{*.If' f‘i'] W ‘I'# {H,..*‘.L
1

Practice 36, p. 546. I
I
Practice 34, p. 546. §, ’ ? |
S5 1%
Exercise 4, p. 583. !
.14
L,
5, 14 4
_ T |
2
] | G"'_" l
& — e, L) — —~?/' = \:' iI
o~ /:%L (s /o) (5=/ j" a
(5= N2 I NG
=\ £ .
O \ | // |
hY
\\\ ¥] gll -
e r/""__'"h"& -
\._‘\ il -;:]- ..IF)II___.-’;
N

ooyl Lt

__I.__— — g J_

S I 3_'., P || | L.

s, s. s, | o L te 1t o o

V,| TR T a_.'; :1, 5'9 Sy Sa &',, ,__,.L _*sf_

£ 4 " l] T = '_.. ! w'
2 Construc:tmn of a machine: the B v Kdder

In seetion 7.2 we saxe how one might create a logic network in hardware for the
addition of binary numbers. We now congider how thie can be incorporated
inte a finite-state machine which is analogouns (p. 547).

We must specify the five elements of a finite-state machine: [, 1,0, f,, fol-
What is the set of states, what the set of inputs, what the set of putputa,
and how are the functions [, and f, defined?

Practice 37, p. 047
Practice 38, p. 548
Newr let's try something g little different: Exercise 15{a), p. 585 This is &

modification, in some sense, of the binary adder. First of all, recognize that
only one bhit is being stored: the author intende in this problem that the first
bit in the output sequence is the cutput of state ¢, in which the machine
gtarted. We need to “carry” the bit which we will write next time, and write
the current bit. We'll sclve this in two waye: in a sloppy way first, and then
in a better way - illustrating the need to be able to minimize a finite-state
machine.

3 Recognition

Definition: Finite-State Machine Hecognition A finite state machine
M with input alphabet I recognizes & subset 5 of I* {the set of finite-length
strings over the input slphabet I) if M, beginning in state 5, and processing
an input string «, ends in a final state {a state with output 1} if and only if
o€ S.

Practice 40, p. 550

Notes:

» Note the emphasis on the word “ends”: we assume that the input stops,
and when the input atops the finsl output its a 1.

fZHJ’;“J Oelo

s 18, oob "
{ia,ﬂrm;m ;@]a?.. -l

G=>@)= GD Ol@w@

(rees” i,

¢ Note alao the “if and l:llnl:l,.r if”: this indicates thai; if the output ends in
a 1, then the string o is in 5; and if string o is in 5, then the output
enda inal.

Whet kinds of input can & finite-state machine recognize? Regular expres-
sions. Hepgular expressions over [are defined recursively by

A
1. the symbol @ and the symbal X; o i “"::
.1 T

i
!
2. the symbol i for any i € I; and qu— s g :.EJ-;{\;

3. the expressions (AB), (Av B), and {A]' if A and B are reg‘ular expres-
gions. ——— T

Kleene’s Theorem assures ue that a finite-state machine can recognize a
get 5 of input strings if and only if the set 5 ie a regular eet (that is, a set
represented by & regular expression).

Since some very reasonsble sets are not regular (e.g. § = {0"1*}, where o®
stands for n copies of a), finite-state machines are obviously not sufficient to
understand all of computation.

Examples of repular sets given by regular expressions:
¢ #20b. The set of all strings beginning with 000; 000(0 v 1)*
¢ #20e. The set of all strings ending in 110; (0V 1)*110

» F#20f. The set of all strings containing 00: {0 1)*00(0 v 1)*

¢ #20d. The set of all strings consisting entirely of any number (including
none) of Q1 paire or consisting entirely of two 1s followed by any number
(including none) of 0s: (01)* v 110*

» #32b. The set of sll str.i;g-;;uf 0s and 1s heving an odd number of Qs:
1*01*(01*01*)*,

Exercise 1¥e), p. 568 - recognition snd minimization motivation

mi”

i,"v"h? o\ @\5 ‘E“ L (Jt]#

4

=

4 Machine Minimization

4.1 Unreachable States Do +£-r‘;&-‘3f‘ 'fz.»‘r"' 1
('1‘.

L

One obvious wey in which & machine can Be rmmrr_uzed is if there is an
unreachable stete: if so, then thet state can certeinly be trimmed from
the machine without any consequences (from the standpoint of cutput). For
example: Table 8.3, p. 552; and Figure 8.7, p. 553.

Practice 43, p. 563

4.2 Equivalent States

1t would be nice if we had some general way of minimizing a machine, how-
ever. [t turns out that we can find a minimized machine by using the idea
of equivalent states. The ides is that several redundant states might operate
in such confusing fashion that it appears there's lots going on, when there’s
not!

In the first step, the unreachable states are removed. That'’s the essy part!
Then we define

Equivalent States: two states s; and s; of M are equivalent if, for any
o € I*, fa(3:,00) = fo(8;, &) where by the awful notation f.(s, o) we mean
the sequence of output which ocenrs given that we start in state s and
receive input .

(There is no way that our anthor should heve used notation which seems to
imply that f, is eomehow both a function from 5 — &5 and a function from
S x I* — 5, except that ehe's proving hereelf a computer scientist and an
object-oriented one at that, and overloeding the function f,...).

In order to find equivalent states, we define the notion of k-equivalency:
two states ere k-equivalent if the machine matches ontput on an input of k&
symbols to the two states.

1. States having the same output symbol are O-equivalent. n -

2. For l-equivalency, we check two O-equivalent states to eee that the
next-etates under all input symbole (of length 1) are 0-equivalent.

3. For 2-equivalency, we check l-equivalent states to see that the next-
gtates under all input gymbole (of length 1) are l-equivalent - and
henee equivalent for strings of length 2, total.

4, Etcll
We iteratively step throngh equivalencies {from 0 on up): as soon as the
states do not change, from k-equivalency to (k+1}-equivalency, then we have
minimized our machine.

Best to look at an example!

Exercise 41, p. 584

The set of states is divided up into subsets of the initiel set which have for
their union the entire set &, and no common intersections. This is called &
partition of the set 5. As we progress from D-equivaleney on up, each subset
can be divided, but none ever coalesce. There can be partition refinement
(finer partition) only.

,-'_' A
! £ A
|i| ¢ | Voo L
il ;J VLAY 4 ..#Jf'f--*"f;x—"'f-"
j 3 !
f] O] & g '
el i /
f
|] |
o T o y b =
f f 4 /
' T] Lay—r 2wy
L . L) o T J ! ol A
T ey -!‘;—.\-l-- T 5 ;
. ¢
R { Ca et o
]
]
6 = |
- -N--_q: - 1 i i :.II

!
o I |
—— B e
. ¢ £ o »
do Sy S+ S| «— F +
¢ " <, ¢ |] | 1 | Bey O ﬁl.-'p
* o 74
p | oo
1 < | 1 T 1
* - F <1 — e ———
I +
|g-.:: puh--[f‘
5 S 5, cEE T Ayree ot = -

\
~ © nﬁ*:h

(D) Cheek Lir v mmable

L v o A 2w 0

§ Frbry

@ C-I H-1D|'.n..-|'..- Q = Itl- ¢4h+
§Aackt & ‘

[
(I}'!.JS‘S , (0.4, 8}
—
Hﬁl}:hj ""J-ﬁr'*-"'"
H’,..,.d.-l.f" i,‘i'r.:-—}’ !"q

j-o-ﬂ-ﬁ*h.. l, 3@
Ji- ¢1-..'..;-.L-u..+

v

