
IE 307 HANDOUT 3: BOOLEAN ALGEBRA

• 3-way light switch:

X

      • A B    •

- want either switch to be able to turn light ON/OFF independent of position of

other switch

X = 1, light ON , A = 1, switch UP , B = 1, UP

0, OFF 0, switch DOWN 0, DOWN

- assume when first installed X = 0, A = 0, and B = 0

- want: A = 0 and B = 0 ⇒ X = 0 A     B     X

A = 0 → 1 and B = 0 ⇒ X = 1 0      0      0

A = 1 and B = 0 → 1 ⇒ X = 0       ⇒ 0      1      1    ⇒ circuit  6

A = 1 → 0 and B = 1 ⇒ X = 1 1      0      1

A = 0 and B = 1 → 0 ⇒ X = 0 1      1      0

- used double pole switches to realize  6   : X = A•B + A•B

-   6    termed exclusive-OR (XOR) since A or B = 1 but not both

  7    termed inclusive-OR (or just OR) since A or B or both = 1

• Seat-belt buzzer :

n.o. n.o.

Ignition (I) Seat-belt (S) Buzzer (B)

- want:

I = 1, ignition ON , S = 1, fastened , B = 1, sound

0, OFF 0, unfastened 0, quiet



I     S     B

0     0     0

0     1     0 ⇒   circuit   2     ⇒   B = I•S   ⇒   seat-belt needs to be

1     0     1           n.c. switch

1     1     0

- physically, S best as n.o., but want it to be n.c. in control circuit

⇒ can use relay:

I relay contact

n.o. n.c.

S relay B

n.o. coil

- both B and relay coil are loads

- when S actuated, current flows through relay coil , which becomes a magnet that

actuates relay contact

• Relays:

- up to now, all i nputs have been mechanical switches that directly made or broke

the circuit controlli ng the load

- relays can be used to indirectly control higher power circuit:

n.o.

120 V AC load ground

high-power circuit

    load

n.o.

12 V DC low-power control circuit



- relays can be normally open (n.o.) or normally closed (n.c.)

- use of relays eliminates need for complex multiple pole switches and wiring

• Logic Gates:  (see handout)

- in seat-belt control circuit, relay used to convert n.o. mechanical switch to n.c.

switch

⇒   performing Logical NOT   ⇒   inverting signal   ⇒   inverter

- NOT gate:

(inverter) NOT gate symbol

n.c. ⇒   A    X=A

- NOR gate: when two (or more) inputs connected in parallel to single relay of

NOT gate, get NOR gate

NOR gate symbol

A

n.c. ⇒ X=A+B

B

- if n.o. relay contact used in NOR gate   ⇒   OR gate   =   A

                    X=A+B

         B

- but, unlike OR gate, NOR gate (and NAND gate) are universal gates

⇒ any Boolean logic circuit can be realized using just NOR gates (or just NAND

gates)



- NOT gate via NOR gate:

A A     B     X

     X     ⇒ 0      0      1 ⇒ A    X=A

        B=0 1      0      0

- OR gate via NOR gates:

A A+B

X = A+B ⇔

B 0

- AND gate via NOR gates: not immediately obvious how to construct

⇒ use Theorems of Boolean Algebra

• Theorems of Boolean Algebra (see handout)

- used to manipulate Boolean expressions

- developed by George Boole in 1850s (Laws of Thought)

- in 1938, Claude Shannon saw one-to-one correspondence between Boolean

expressions and switching circuits

⇒ Boolean algebra can be used to simpli fy logic control circuits

- AND gate via NOR gates + Boolean algebra:

Want: X = A•B

    = A•B (by Negation Th.)

Let A’ = A and B’ = B

X = A’•B’

    = A’+B’ (by DeMorgan 2      left side of DeMorgan 2 is NOR)

    = A + B



         A       A
      A          X=A•B            0           X=A•B
⇒          B            ⇒   B            ⇔
      B            0

     AND gate symbol

- Theorems also give NOT and OR gates via NOR gates:

NOT: X = A OR: X = A + B

    = A • 1     (by Char. 2)     = A + B      (by Neg.)

    = A • 0     (1=0 & 0=1)     = A • B      (by DeMorgan 1)

    = A + 0     (by DeMorgan 2)     = A • B • 1      (by Char. 2)

    = A • B • 0      (1=0)

    = A • B + 0      (by DeMorgan 2)

    = (A + B) + 0   (by DeMorgan 2)

• Transistor Logic:

- Why are 3 NOR gates used instead of 1 AND gate?

- NOR gate easy to make using transistor

- transistors used instead of relays in all control applications except to switch high

power circuits

Collector

A          X n

    ⇔ A    Base       ⇔ p

X n

Emitter

n.c. relay n-p-n transistor semiconductor

- for control system design, can think in terms of relays



• Multi-input gates: logic gates can have more than two inputs

A X = A + B + . . .    can all be realized using multi -input

B         NOR or NAND gates
. . .

• Input negation:

A A

B ⇔ B      ⇔     X = A + B

• Nesting: when output from gate used as input to next, equivalent to parenthesis in

Boolean expression (AND higher precedence than OR)

• Logic gate network   ⇒   Boolean expression:

A AND

B

OR ⇔   X = (A • B + C) + C

C OR      X

A AND

OR AND ⇔   X = [(A • B) + B + (B + C)] •D

B              X            = (A • B + B + B + C) • D

OR

C

D



Theorems and Laws of Boolean Algebra

CHARACTERISTIC THEOREMS NEGATION THEOREM

1. X • 0 = 0 (X) = X

2. X • 1 = X

3. X + 0 = X INCLUSION THEOREMS

4. X + 1 = 1 1. X • X = 0

2. X + X = 1

COMM UTATIVE LAW

1. X + Y = Y + X ABSORPTIVE LAWS

2. X • Y = Y • X 1. X + XY = X

2. X(X + Y) = X

ASSOCIATIVE LAW

1. X + Y + Z = X + (Y + Z) REFLECTIVE THEOREMS

          = (X + Y) + Z 1. X + XY = X + Y

2. X • Y • Z = X • (Y • Z) 2. X(X + Y) = XY

          = (X • Y) • Z 3. XY + XYZ = XY + YZ

DISTRIBUTIVE LAW CONSISTENCY THEOREM

1. X • Y + X • Z = X(Y + Z) 1. XY + XY = X

2. (X + Y)(W + Z) = XW + XZ + YW + YZ 2. (X + Y)(X + Y) = X

IDEMPOTENT THEOREMS DEMORGAN’S LAWS

1. X • X = X 1. XY = X + Y

2. X + X = X 2. X + Y = XY



  ≡ ⊃

Logic:                 ∧               A               B             ∨        ↓     ↔     B     ←     A      →      ↑

Boolean:     • ⊕     +   •

Name:    AND             XOR   OR   NOR  XNOR  NOT          NOT           NAND

A B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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DIGITAL L OGIC GATES AND ASSOCIATED LOGICAL OPERATIONS FOR
BINARY VAR IABLES

Name Symbol Logical operation Truth table

AND A Z = A • B A B Z
B                                 Z 0 0 0

0 1 0
1 0 0
1 1 1

OR A Z = A + B A B Z
B Z 0 0 0

0 1 1
1 0 1
1 1 1

NOT A Z Z = A A Z
0 1
1 0

NAND A Z = A • B A B Z
B Z 0 0 1

0 1 1
1 0 1
1 1 0

NOR A Z = (A + B) A B Z
B Z 0 0 1

0 1 0
1 0 0
1 1 0

XOR A Z = A ⊕ B A B Z
B Z 0 0 0

0 1 1
1 0 1
1 1 0

XNOR A Z = A • B A B Z
B Z 0 0 1

0 1 0
1 0 0
1 1 1



• Simpli fying Boolean expression   ⇔   reducing number of logic gates

X = (A • B + C) + C A NAND

    = (A • B • C) + C    (by DeMorgan 2)       ⇒ B OR

    = A • B + C        (by Reflective 1) C X

( ↓  from 3 to 2 gates)

X = (A • B + B + B + C) • D A

    = (A • B + B + C) • D  (by Idempotent 2)   ⇒B OR

    = (A + B + C) • D  (by Reflective 1) C AND

D X

( ↓  from 4 to 2 )

• Canonical Sum-of-Products Form

- Used to realize any logic control circuit from its truth table

1. For each circuit, construct its truth table to relate all possible inputs to desired output of

circuit:

Row   A     B     X

0         0      0      0

1         0      1      1 desired output

2         1      0      1

3         1      1       1

2. For each row where X = 1, AND together inputs, where 0 inputs are NOTed

row 0: (X ≠ 1)

row 1: A AND    A • B

B

row 2: A AND    A • B OR X

B

row 3: A AND    A • B

B



3. OR together AND gates from step 2

X = A • B + A • B + A • B

4. Use Theorems of Boolean Algebra to simpli fy if possible

= A • B + A • (B + B) (by Distrib. 1)

= A • B + A • (1) (by Inclusion 2)

= A • B + A (by Char. 2)

= B + A (by Reflect. 1)

= A + B   ⇒   OR (by Commut. 1)

- termed “Sum-of-Products” since OR-ing together (summing) AND-ed inputs (products)

- Example: XOR

A     B     X

0      0      0

0      1      1 ⇒   X = A • B + A • B, can’ t simpli fy

1      0      1

1      1      0

- Example: Seat belt and Door-Open Buzzer

I = 1, ignition ON  , S = 1, seat belt fastened

0, OFF 0, unfastened

D = 1, door closed , B = 1, sound

0, door open 0, quiet



I     S     D     B B = I • S • D + I • S • D + I • S • D

0     0     0     0     = I • (S•D + S•D + S•D) (by Distrib. 1)

0     0     1     0 quiet when     = I • (S + S•D) (by Consist. 1)

0     1     0     0 I = 0     = I • (S + D) (by Reflect. 1)

0     1     1     0

1     0     0     1 I B

1     0     1     1 S

1     1     0     1 D

1     1     1     0

- Example: Automatic Door and Lock

D = 1, door opening O = 1, door not shut D=1 D=0

0, door closing 0, door shut open switch (O)

M = 1, someone on mat L = 1, unlocked Mat (M) lock (L)

0, no one on mat 0, locked

Operation: Want door to open if someone on mat and door unlocked.

If locked, want it to stay open or shut independent of mat

         M     L     O     D D = M•L•O + M•L•O + M•L•O + M•L•O

Stay shut       0      0      0      0      start  0       = (M+M) •L•O + M•L•(O+O) (by Distrib. 1)

         0      0      1      1       unlock  1       = (1) •L•O + M•L•(1) (by Inclus. 2)

         0      1      0      0       = L•O + M•L

stay open      0      1      1      0             closing  5

         1      0      0      0              open  2

         1      0      1      1

         1      1      0      1             opening  3

         1      1      1      1              shut  4



M AND

L OR D

AND

O


