
IE 307 HANDOUT 3: BOOLEAN ALGEBRA

• 3-way light switch:

X

 • A B •

- want either switch to be able to turn light ON/OFF independent of position of

other switch

X = 1, light ON , A = 1, switch UP , B = 1, UP

0, OFF 0, switch DOWN 0, DOWN

- assume when first installed X = 0, A = 0, and B = 0

- want: A = 0 and B = 0 ⇒ X = 0 A B X

A = 0 → 1 and B = 0 ⇒ X = 1 0 0 0

A = 1 and B = 0 → 1 ⇒ X = 0 ⇒ 0 1 1 ⇒ circuit 6

A = 1 → 0 and B = 1 ⇒ X = 1 1 0 1

A = 0 and B = 1 → 0 ⇒ X = 0 1 1 0

- used double pole switches to realize 6 : X = A•B + A•B

- 6 termed exclusive-OR (XOR) since A or B = 1 but not both

 7 termed inclusive-OR (or just OR) since A or B or both = 1

• Seat-belt buzzer :

n.o. n.o.

Ignition (I) Seat-belt (S) Buzzer (B)

- want:

I = 1, ignition ON , S = 1, fastened , B = 1, sound

0, OFF 0, unfastened 0, quiet

I S B

0 0 0

0 1 0 ⇒ circuit 2 ⇒ B = I•S ⇒ seat-belt needs to be

1 0 1 n.c. switch

1 1 0

- physically, S best as n.o., but want it to be n.c. in control circuit

⇒ can use relay:

I relay contact

n.o. n.c.

S relay B

n.o. coil

- both B and relay coil are loads

- when S actuated, current flows through relay coil , which becomes a magnet that

actuates relay contact

• Relays:

- up to now, all i nputs have been mechanical switches that directly made or broke

the circuit controlli ng the load

- relays can be used to indirectly control higher power circuit:

n.o.

120 V AC load ground

high-power circuit

 load

n.o.

12 V DC low-power control circuit

- relays can be normally open (n.o.) or normally closed (n.c.)

- use of relays eliminates need for complex multiple pole switches and wiring

• Logic Gates: (see handout)

- in seat-belt control circuit, relay used to convert n.o. mechanical switch to n.c.

switch

⇒ performing Logical NOT ⇒ inverting signal ⇒ inverter

- NOT gate:

(inverter) NOT gate symbol

n.c. ⇒ A X=A

- NOR gate: when two (or more) inputs connected in parallel to single relay of

NOT gate, get NOR gate

NOR gate symbol

A

n.c. ⇒ X=A+B

B

- if n.o. relay contact used in NOR gate ⇒ OR gate = A

 X=A+B

 B

- but, unlike OR gate, NOR gate (and NAND gate) are universal gates

⇒ any Boolean logic circuit can be realized using just NOR gates (or just NAND

gates)

- NOT gate via NOR gate:

A A B X

 X ⇒ 0 0 1 ⇒ A X=A

 B=0 1 0 0

- OR gate via NOR gates:

A A+B

X = A+B ⇔

B 0

- AND gate via NOR gates: not immediately obvious how to construct

⇒ use Theorems of Boolean Algebra

• Theorems of Boolean Algebra (see handout)

- used to manipulate Boolean expressions

- developed by George Boole in 1850s (Laws of Thought)

- in 1938, Claude Shannon saw one-to-one correspondence between Boolean

expressions and switching circuits

⇒ Boolean algebra can be used to simpli fy logic control circuits

- AND gate via NOR gates + Boolean algebra:

Want: X = A•B

 = A•B (by Negation Th.)

Let A’ = A and B’ = B

X = A’•B’

 = A’+B’ (by DeMorgan 2  left side of DeMorgan 2 is NOR)

 = A + B

 A A
 A X=A•B 0 X=A•B
⇒ B ⇒ B ⇔
 B 0

 AND gate symbol

- Theorems also give NOT and OR gates via NOR gates:

NOT: X = A OR: X = A + B

 = A • 1 (by Char. 2) = A + B (by Neg.)

 = A • 0 (1=0 & 0=1) = A • B (by DeMorgan 1)

 = A + 0 (by DeMorgan 2) = A • B • 1 (by Char. 2)

 = A • B • 0 (1=0)

 = A • B + 0 (by DeMorgan 2)

 = (A + B) + 0 (by DeMorgan 2)

• Transistor Logic:

- Why are 3 NOR gates used instead of 1 AND gate?

- NOR gate easy to make using transistor

- transistors used instead of relays in all control applications except to switch high

power circuits

Collector

A X n

 ⇔ A Base ⇔ p

X n

Emitter

n.c. relay n-p-n transistor semiconductor

- for control system design, can think in terms of relays

• Multi-input gates: logic gates can have more than two inputs

A X = A + B + . . .  can all be realized using multi -input

B NOR or NAND gates
. . .

• Input negation:

A A

B ⇔ B ⇔ X = A + B

• Nesting: when output from gate used as input to next, equivalent to parenthesis in

Boolean expression (AND higher precedence than OR)

• Logic gate network ⇒ Boolean expression:

A AND

B

OR ⇔ X = (A • B + C) + C

C OR X

A AND

OR AND ⇔ X = [(A • B) + B + (B + C)] •D

B X = (A • B + B + B + C) • D

OR

C

D

Theorems and Laws of Boolean Algebra

CHARACTERISTIC THEOREMS NEGATION THEOREM

1. X • 0 = 0 (X) = X

2. X • 1 = X

3. X + 0 = X INCLUSION THEOREMS

4. X + 1 = 1 1. X • X = 0

2. X + X = 1

COMM UTATIVE LAW

1. X + Y = Y + X ABSORPTIVE LAWS

2. X • Y = Y • X 1. X + XY = X

2. X(X + Y) = X

ASSOCIATIVE LAW

1. X + Y + Z = X + (Y + Z) REFLECTIVE THEOREMS

 = (X + Y) + Z 1. X + XY = X + Y

2. X • Y • Z = X • (Y • Z) 2. X(X + Y) = XY

 = (X • Y) • Z 3. XY + XYZ = XY + YZ

DISTRIBUTIVE LAW CONSISTENCY THEOREM

1. X • Y + X • Z = X(Y + Z) 1. XY + XY = X

2. (X + Y)(W + Z) = XW + XZ + YW + YZ 2. (X + Y)(X + Y) = X

IDEMPOTENT THEOREMS DEMORGAN’S LAWS

1. X • X = X 1. XY = X + Y

2. X + X = X 2. X + Y = XY

 ≡ ⊃

Logic: ∧ A B ∨ ↓ ↔ B ← A → ↑

Boolean: • ⊕ + •

Name: AND XOR OR NOR XNOR NOT NOT NAND

A B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

sh
or

t c
ir

cu
it

A
• B

A
• B A

A
• B B

A
• B

 +
 A

• B

A
+

B

A
• B

, A
+

B

A
• B

 +
 A

• B

B

A
+

B

A

A
+

B

A
+

B
, A

• B

no
 c

on
tr

ol

DIGITAL L OGIC GATES AND ASSOCIATED LOGICAL OPERATIONS FOR
BINARY VAR IABLES

Name Symbol Logical operation Truth table

AND A Z = A • B A B Z
B Z 0 0 0

0 1 0
1 0 0
1 1 1

OR A Z = A + B A B Z
B Z 0 0 0

0 1 1
1 0 1
1 1 1

NOT A Z Z = A A Z
0 1
1 0

NAND A Z = A • B A B Z
B Z 0 0 1

0 1 1
1 0 1
1 1 0

NOR A Z = (A + B) A B Z
B Z 0 0 1

0 1 0
1 0 0
1 1 0

XOR A Z = A ⊕ B A B Z
B Z 0 0 0

0 1 1
1 0 1
1 1 0

XNOR A Z = A • B A B Z
B Z 0 0 1

0 1 0
1 0 0
1 1 1

• Simpli fying Boolean expression ⇔ reducing number of logic gates

X = (A • B + C) + C A NAND

 = (A • B • C) + C (by DeMorgan 2) ⇒ B OR

 = A • B + C (by Reflective 1) C X

(↓ from 3 to 2 gates)

X = (A • B + B + B + C) • D A

 = (A • B + B + C) • D (by Idempotent 2) ⇒B OR

 = (A + B + C) • D (by Reflective 1) C AND

D X

(↓ from 4 to 2)

• Canonical Sum-of-Products Form

- Used to realize any logic control circuit from its truth table

1. For each circuit, construct its truth table to relate all possible inputs to desired output of

circuit:

Row A B X

0 0 0 0

1 0 1 1 desired output

2 1 0 1

3 1 1 1

2. For each row where X = 1, AND together inputs, where 0 inputs are NOTed

row 0: (X ≠ 1)

row 1: A AND A • B

B

row 2: A AND A • B OR X

B

row 3: A AND A • B

B

3. OR together AND gates from step 2

X = A • B + A • B + A • B

4. Use Theorems of Boolean Algebra to simpli fy if possible

= A • B + A • (B + B) (by Distrib. 1)

= A • B + A • (1) (by Inclusion 2)

= A • B + A (by Char. 2)

= B + A (by Reflect. 1)

= A + B ⇒ OR (by Commut. 1)

- termed “Sum-of-Products” since OR-ing together (summing) AND-ed inputs (products)

- Example: XOR

A B X

0 0 0

0 1 1 ⇒ X = A • B + A • B, can’ t simpli fy

1 0 1

1 1 0

- Example: Seat belt and Door-Open Buzzer

I = 1, ignition ON , S = 1, seat belt fastened

0, OFF 0, unfastened

D = 1, door closed , B = 1, sound

0, door open 0, quiet

I S D B B = I • S • D + I • S • D + I • S • D

0 0 0 0 = I • (S•D + S•D + S•D) (by Distrib. 1)

0 0 1 0 quiet when = I • (S + S•D) (by Consist. 1)

0 1 0 0 I = 0 = I • (S + D) (by Reflect. 1)

0 1 1 0

1 0 0 1 I B

1 0 1 1 S

1 1 0 1 D

1 1 1 0

- Example: Automatic Door and Lock

D = 1, door opening O = 1, door not shut D=1 D=0

0, door closing 0, door shut open switch (O)

M = 1, someone on mat L = 1, unlocked Mat (M) lock (L)

0, no one on mat 0, locked

Operation: Want door to open if someone on mat and door unlocked.

If locked, want it to stay open or shut independent of mat

 M L O D D = M•L•O + M•L•O + M•L•O + M•L•O

Stay shut 0 0 0 0 start 0 = (M+M) •L•O + M•L•(O+O) (by Distrib. 1)

 0 0 1 1 unlock 1 = (1) •L•O + M•L•(1) (by Inclus. 2)

 0 1 0 0 = L•O + M•L

stay open 0 1 1 0 closing 5

 1 0 0 0 open 2

 1 0 1 1

 1 1 0 1 opening 3

 1 1 1 1 shut 4

M AND

L OR D

AND

O

