Number Theory Section Summary: 13.1
Fibonacci Numbers

1. Summary

Leonardo de Pisa (1180-12507), better known as Fibonacci, wrote the
Liber Abaci, in which he included a problem about rabbits:

A man put one pair of rabbits in a certain place entirely surrounded by
a wall. How many pairs of rabbits can be produced from that pair in a
year, if the nature of these rabbits 1s such that every month each pair
bears a new pair which from the second month on becomes productive?

lgnoring the terrible incestuous implications, the resulting sequence of
numbers of pairs of rabbits is known as the Fibonacci numbers:
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! 0)1, 1,2,3,5,8,13,21,34,55,89, 144, 233, 377, ....
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This works out to the recursive sequence

[ Uy = Up—1 T Up—2

for n > 3, where u; = uy = 1, the first known recursive definition in
mathematics.

2. Theorems

An important result which we will need in the following theorems is
this:
Um+n = Um—1Up + Uy Upn+1 (1)

Proof: by induction on n. G vee » = L . Com s Av—™
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Theorem 13.1: For the Fibonacci sequence, ged(uy,,u,+1) = 1 for
every n > 1.

Proof: direct, and using lemma, p. 27.
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U= 194

Theorem 13.2: For m > 1 and n > 1, ty, |t

Proof: by induction on n (straightforward, using (?7)).
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Lemma: If m = gn + r, then ged(u,,, u,) = ged(u,, uy,)

L£+_ d = 740({%,“)(/1,\)
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Theorem 13.3: The greatest common divisor of two Fibonacci num-
bers is again a Fibonacci number; specifically ged(uy,, u,) = ug where
d = ged(m,n).
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Corollary: In the Fibonacci sequence, u,,|u,, if and only if m|n for
n>m> 3.

3. Properties/Tricks/Hints/Etc.

e For every prime p, there are infinitely many Fibonacci numbers
that are divisible by p, equally spaced along the Fibonacci se-
quence.

e [t is not known if there are infinitely many prime Fibonacci num-
bers.



