Section 1.4: Predicate Logic

January 23, 2006

Abstract

We now consider the logic associated with predicate wffs, including a new set of derivation rules for demonstrating validity (the analogue of tautology in the propositional calculus).

1 Derivation rules

- First of all, all the rules of propositional logic still hold. Whew! Propositional wffs are simply boring, variable-less predicate wffs.
- Our author suggests the following "general plan of attack":
 - strip off the quantifiers
 - work with the separate wffs
 - insert quantifiers as necessary

Now, how may we legitimately do so?

• New rules for predicate logic: in the following, you should understand by the symbol x in P(x) an expression with free variable x, possibly containing other (quantified) variables: e.g.

$$P(x) = (\forall y)(\exists z)Q(x, y, z) \tag{1}$$

- Universal Instantiation: from $(\forall x)P(x)$ deduce P(t).

Caveat: t must not already appear as a variable in the expression for P(x): in the equation above, (1), it would not do to use P(y) or P(z), as they appear in the expression already.

Example: Practice 22, p. 48

- Existential Instantiation: from $(\exists x)P(x)$ deduce P(t).

Caveat: t must be introduced for the first time (so do these early in proofs). You can do a universal instantiation which also uses t after an existential instantiation with t, but not vice versa (e.g. Example 27).

Example: Ex. #11, p. 58 (start).

- Universal Generalization: from P(x) deduce $(\forall x)P(x)$.

Caveats:

- * P(x) hasn't been deduced by existential instantiation from any hypothesis in which x was free, and
- * P(x) hasn't been deduced by existential instantiation from another wff in which x was free.

Example: Ex. #17, p. 58

2,4 mp

5, ng

7. (4x)p(x) -> (4x) Q(x) deduction antend.

(Note: the deduction method still applies, of course.)

- Existential Generalization: from P(a) deduce $(\exists x)P(x)$.

Caveat: x must not appear in P(a).

Example: Ex. #11, p. 58 (finish).

Look at the three proofs using a temporary hypothesis (Examples #31, and 32(a,b)). Notice how the introduction of the temporary hypothesis ends with an implication, which is then useful for the continuation of the proof.

i. The two with are equivalent.