Section 1.4: Predicate Logic

January 23, 2006

Abstract
We now conslder the logie associated with predieate wifs, Inclnding
a new set of derivation rnles for demonstrating validity (the analogue
of tautalogy in the propositional calenlus).

1 Derivation rules

» First of &ll, all the rules of propositional logic still hold. Whew! Propo-
sitional wifs are simply boring, variable-less predicate wifs.

» Qur author suggests the following “general plan of attack”:

— strip off the quamntifiers
— work with the separate wils

— insert quantifiers as necessary

Now, how may we legitimately do so?

» New rules for predicate logic: in the fellowing, you should understand
by the symhol z in P{z) an expression with free variable z, possibly
containing other {quantified) wriables: e.g.

P(z) = (vy)(A)Q(z, 9, 2] (1)



— Universal Instantiation: rom (vz) P(x) deduce P{t).

Coveal t must not already appear ag & varisble in the expression
for P{z): n the equation above, (1), it would not do to use P(y)
or P(z), a8 they appesr in the expression already.

Exemple: Practice 22, p. 48
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— Existential Instantiation: from (3z)P(x) deduce P{t).

Covest: t must be introduced for the first time {so do these early
in proofs). You can do & universal instantiation which also uses
t after an existential instantiation with £, but not wee verse (e.g.
Example 27).

Example: Ex. #11, p. 58 (start).
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— Universal Generalization: from P(z) deduce (¥z)P(z).

Clavents:

* P(z) hasn’t been deduced by existential instantiation from
any hypothesis in which = was free, and

* P(z) hasn't been deduced hy existential instantiation from
another wif in which z was free.

Exsmple: Ex. #17, p. 5&
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{(Note: the deduction method still applies, of course.)

— Existential Generalization: from P{g) deduce (3z)F(z).
Covegt: T must not appear in P{a).

Example: Ex. #11, p. 58 (finigh).






Look at the three proofs using a temporary hypothesis [Examples
#31, and 32(s,b)). Notice how the introduction of the temporary
hypothesia ends with an implication, which is then useful for the
continuation of the proof.

Exemple; Practice 25, p. 52
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So now, how would we demonstrate that
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