Section 1.5: Logic Programming

January 25, 2006

Abatract

In this aection we see an application of logic in a lenguage called
“Prolog® (for PROgramming in LOGie). Of particuler interest is the
“Inference engine” uaed by the languege to prove theorems {1.e. answer
gueries). With such a languege it is essy to create an “expert system”.
We are alro introduced to recursion.

1 PROLOG

Prolog (PROgramming in LOGic) is a declarative (rather than procedural)
language, with its own inference rules which allow the user to pose interesting
questions of a database of facte and rules. The questions are answered by
applications of predicate logic.

While the book usss a PROLOG “peeudo-code”, we will use a freely
obtainable (GNU Lesser General Public License) wersion of prolog {SWI-
Prolog) to get a better feeling for prolog. On our course website is a demo
file that I will use todsy in class. [encourage you to download SW1-Prolog
and experiment!

1.1 Prolog database

This is composed of facte and “rules” (which are also statements, or
facts!). 1n terms of predicate logic, one creates predicate wifa on the fly,

and establishes which elements of the domain meke themn true by pessing
exhaustively over the domain. For example,

1

ansmal(bear)

says that the predicate A{x) representing the predicate wif “x is an animal”
is true far the constant “hear”.
Facts can be binary, a8 well (and n-ary in genersl, of course):

esl{ bear fox)

aagerts that the predieate wil E(z, i) given by “x eats y” is satisfied hy bears
and foxes (to the chagrin of the foxes, and the delight of the bears).

In addition, rules can be established {0 check whether logical connectives
between facte are true. For example,

preyiz) if eat{y,z) and enimalfz)

wonld tell us if an animal is eaten by something else. In fact, notice that it
is expressed ag an implication {(begun by “if"): translated in more standard
predicate wif form, it might read

Ely,z) A A(z) — Priz).
which Prolog treats as if it is universally quantified:
(v2) (Vi) [B(y, z) A Alz) — Pr(z)].

(i.e., the compilation of the rule means that it is true for all = and for all
). Here is an example of a convention in which apparently free variables are
actually quantified; as long as everyone is on board, not a problem!
So, as promised, the Prolog “rules” are simply more complex predicate
wils, rather than inference rules which it might use to prove theorems.
Once the database is created (“compiled”), we can move on to the im-
portant issue of posing interesting questions to the database.

1.2 Prolog queries and “proofs”

Our text lists “i8” and “which” 83 examples of Prolog queries. The first
tests an emsertion, whereas the second ssks for all instances which make s
statement true.

Exarople: Practice 28, p. 6l

uf\.oL{)‘ : &‘-"FK}‘,‘?> s 2 faf.u.%('\f))

rltﬁpu% '- a{.e__::/‘

Proofs are hased on Horm clauses, which are simply implications ex-
pressed a5 disjunctions using the implication rule:

Pos = PPvQ

The right-hand side above 12 an example of & Horn clange: a wif composed
of predicates or the negations of predicates joined by disjunctions, where at
most one predicate is unnegated.

3o all the facts, which were expressed either as existential instantiations or
as implications with universal generalization, are expressible as Horn clanses.
A general srgument (turned into & Horn elause) looks like

BABRA..ANB—-Q & PvFv..vEV(Q
The gregfz} rule from above,
E(y,) A Alz) — Pr(x),

in expressed ss 2 Horn clause as

Ely. z)' v A(zY v Pr(z).

Prolog uses Horn clauses to prove argnments by resolution (which is
essentislly disjnnetive syllogiam): it matches an unnegated predicate with a
negated predicate in another rule.

For example, consider our rule prey{z), and the request for those animals

which are prey:

which(z: prey(z/)

How will Prolog operate? It seeks a rule with prey es an unnegated predicate
(f.e. i is the conpequent of an implicgtion). It finds

Ely. zY' v AlzY v Pr(z).

Prolog then secks unmegated E{y,z) or A(x} to collapse this argument us-
ing digjunctive syllogism. It finds, for example, that E{bear, foz). Using
universal instantistion, Prolog reckons that perhaps —_

E@(ﬁ)’ v A(foz)' v Pr(foz).

3

and combines the two to reduce the arpument to

M’ v Pr(fox).

When Prolog checks its list of facts, and encounters A{foz), it will resolve
with that above to conclude

(fo).

N
Alternatively, this can slso be thonght of as modus penens: A(fox), A{for) —
Pr(foz) resolves to Pr(foz).

Example: watch the software SWI-Prolog resolve issnes associated with
Example 39, p. 64.

Exzmople: Practice 29, p. 66

The reason that Prolog can prove theorems in this way is that the domain
in finite: when you create the databaee, it is only possible to specify a finite
collection of facts, which means thet Prolog need only test a finite set of
instances for truth.

1.3 Recursive rules

Prolog offers us cur first example of recurston, “... in which the item
being defined is iteelf part of the definition....” While this is a very powerful

4

and faseinating idea, it can go horribly awry (in the form of infinite loops).
We'll see some shortly.

Some rules are recursive in nature: for example, in problem #13, p.
70, we're asked to congider a Prolog database for parte of an automohile
engine. Partas have been dassified into big and small, and a rule exists which
determines “part-of’. Now we're to write a rule for “component-of”. Since
a screw may be a part of a filter, which is a part of the fuel system, we need
a rule which can dig down into the structure of the parts to diecover the true
“component-ness” of a part within a part.

Congider the rule defined as two rules, as follows:

componeni-of(z,y) if pari-of{z,y)
component-offz,y) if pari-offz,z) and component-of{z,y)

The first. definition gives us a base case: if 2 is a part of ¢, then it ie certainly
a component of 4. On the other hand, the second definition allows s to
determine thet, since screw is & part of filter, and filter is & part of the fuel
gystem, and fuel system is part of the engine, hence screw ie a component of

the engine.

Example: watch SW1-Prolog resolve in-food-chainfbear, X) (Example 38, p.
B7).

Example: Practice 30, p. 68

Prolog uses & depth-first strategy for snewering questions with recursion
(that is, exploring the length of a path before coming back up to explore
an adjacent path), rather than a breadth-firat strategy. We'll explore both
these senarch strategies later on in the course in greater detail

