Section 2.5: Analysis of Algorithms

Fehruary 8, 2006

Abatract
By analysis of algorithms we mean the study of the efficiency
of the algorithms. In this sertlon we will measure the efflviency of
en algorithm by counting operationa (and of course we mre generally
shooting for a small number, in our endless pursuit of optimization).

1 Counting operations directly

lo algorithm SequentiaiSesrch (p. 148), we search for element = in & list of
i items. SequentialSearch is a direct method, by comparison with algorithm
BinarySearch (p. 130), which is recursive. Is one algorithm more efficient
than the other?

In the SequentinlSearch, there are three rather interesting cases:
¢ we find # on the wery first try {totel comperigema: 17). This i3 called

the “best-case” scenario.

¢ we find & on the lest try (total comparisons; ). This is the “worst-
case’’ scenario,

¢ On average, we require (n+ 1)/2 comparisons, remembering Gauss: we
sum up all the capes from 1 to v, and divide by n:
e lalnd 1) n+l

§om

n & no 2 2

We will consider the worst-case scenario as the benchmark.




2 Counting Using Recurrence Relations

Alporithm BinarySearch is recursive: it calls itself. Starting from s list of
length w it makes one eomperison and then calle iteelf with & list of half
its nitial length. Hence the number of comparisons for the list of length »,
C(r), would be (in the worst case)

Cln) = C(floor(nj2)) +1

and (1) = 1. That floor function is & pain, but is necessary gince »n may be
odd.

Forgetting the floor for the moment, use the “expand, guess, and verify”
approach: in the woret-case scenario, the algorithm will find the element {or
not) on its last check (when it’s down to a list of length 1).

—_—
Cin)=Cn/2) +1 = (CnMA)+D+1=((Cr[+D+1+1=..

Obviously this is only going to work easily (in the sense that C'(n/8), etc.,
make sense) if n is & power of 2. Assume therefore that|n = 2™} for integer
. This allows us to throw away the floor function, and makes all quotients
reasonable.

Consider a change of variable: in

cept 2 Joem =cemny 41 L

WedeﬁneT{m]=G(2m]Buhthat T .y a ,_r,,,_f.;:'J'-i‘a-.. oL O *

[T =Tm-D+1| 2

Note that T(0) = C(1) = 1. We can solve essily to get a closed-form solution
of

e

T(m) =m+ 1 @[m-ﬁ SRR

Hence, C{n) = C(2™) = T(m) = m + 1 = logz{n) + 1. This compares quite
fayorsbly with the worst-case eatimate from SequentiolSearch, which would
be 7 (linear in 7).

(For those of you who've forgotten, the log function grows much more slowly
than & linear function.)

o

2 n.._-z

;-931 "o l‘ﬂﬁzzh

[log~ = =\




Let’s look at the general recurrence relation of the “divide and conguer”
variety: given

} 5(1) =a M) = p
S(ﬂ]={:3{ﬂ‘,‘r2]—|—g[ﬂ) ﬂfﬂ!'ﬂ 1.‘4{%‘] -I"(h-i}
ﬁa&mmn=2“f0rmmﬂﬁltég’e;m. Then
5@ =a ""::_
S{2™) = e5(2" 1) + g(27) €
3(.«’1# o

Now we perform the change of variables: let T{m) = 5{2™), so that

T =a
T(m) = cI'(m — 1) + g(2™)

Using formula (8) of section 2.4, p. 134, we get

TWETIET Y T et 5@

Then reindexing, since we start with 0 rather than 1, we get

T(m) = &"T(0) + 6™ o(2)

=
a =0
Finally, substituting back in 5 and n, we get
.y e L
T— ME:HE'II - 3{;-",: =l
S(2™) =c®amg Y FoEmTig(2)
T: S lesu? hgon o
Whew vy, M (ﬂ} = -Z 2- " .2 (2.‘."")

-~
The BinarySegrch algorithm starte with a sorted list, which is not & require-
ment, for the SequentiolSearch algorithm; so the comparison isn't really fair.
What if we add a sort?

Examople: Exercise 13, p. 154 Muse Sord

a...) ﬁ,fﬂ Lm A Jr’“-f’ .
2 ﬂ- nr':i--'-ﬁ
L i
(,+fj{,,ufJ¢.#$ o~ oA,

) Y e 32 4
(o), &), (s.m) 5.9

e) 3 c--},as-::.f--.: ) 4



@J);Q;n ;T ERL Y 3 s (3,), ()

Example: Exercise 14, p. 156

< 4
Wertk coatr r+ S =
.3, <

z.,'-f'.-;,

1,7 44,8, ¢
| Pl

Exzsmople: Exercise 15, p. 156

ﬂ’h‘w T .?-h
M) = 0
M(n) = 2M (%) T[“{M}' - ]

-

VL TCARE N CEND

Example: Exercise 16, p. 156

LA AP S
M ("«) - _‘ZLH' Az (:r_"-u)
oY

z Z m[l-fi}

Tl
ES
*N
.
N,
¥

tl

s
™M

|
™

™

&
e J



N R
[ﬂﬁﬂ. ﬁn(i*‘-‘l!.‘
J

v on(log,m - 1) +
So we cAh CArTy nut the BinarySearch algnnthm following a MergeSort (gee
the exercises above for ite definition), with

logoin) + 1+ ndoga(n) —n+ 1
e i R R W

oI
(rz + 1)loga(n) + 2

operations, compared with = operafions for SequentialSenrch - which wins in
this case! {n+ 1) og(n) is superlinear - grows faster than the linear function
Ti.

If we had started with a sorted list, howewver, it would make no sense to use
SequentialSearch, since BinarySearch is so much more efficient.

3 Other criteria

An algorithm should not be analyzed quite so one-dimensionslly as we've
done here, of course: there may be other issues (such as how easily paral-
lelized an mlgorithm is, for example) which are more important than simple
operation counts.

Ag demonstrated in the case of the Euclidean Algorithm (or ged) in this
gection, we may simply be shooting for an upper bound on the number of
operations required (even worse then the worst case seenariol), when actual
worst-case numbers are hard to come by.

Actually, in this case, worst-case numbers are eagy to get: the worst case
for the Euclidean algorithm is a pair of consecutive Fibonacei numbers {(there
they are again, those rascals!). An example pair would be 5 and 3, or 88 end
oo,



