Last time: section 1.2 (propositional logic) | Next time: discuss section 1.4 (predicate logic); homework 1.2 due. |
Today:
Links:
On a set containing all sets: Russell's paradox.
"Russell's paradox is the most famous of the logical or set-theoretical paradoxes. The paradox arises within naive set theory by considering the set of all sets that are not members of themselves. Such a set appears to be a member of itself if and only if it is not a member of itself, hence the paradox.
"Some sets, such as the set of all teacups, are not members of themselves. Other sets, such as the set of all non-teacups, are members of themselves. Call the set of all sets that are not members of themselves S. If S is a member of itself, then by definition it must not be a member of itself. Similarly, if S is not a member of itself, then by definition it must be a member of itself. Discovered by Bertrand Russell in 1901, the paradox has prompted much work in logic, set theory and the philosophy and foundations of mathematics."