Section 1.2: Propositional Logic

August 22, 2007

Abstract

Now we're going to use the tools of formal logic to reach logical conclusions based on wffs formed by given statements. This is the domain of propositional logic.

Note: dual labelled exercises and page numbers refer to 5th/6th edition numbers, respectively.

- Propositional wff: represent some sort of argument, to be tested, or proven, by propositional logic.
- valid arguments, e.g.

$$P_1 \wedge P_2 \wedge \ldots \wedge P_n \to Q$$

have **hypotheses** (we suppose that the P_i are true), and a **conclusion** (Q). To be *valid*, this argument must be a tautology (always true). To be an *argument*, Q must not be identically true (i.e. a fact, in which case the hypotheses would be irrelevant!).

• **Proof Sequence**: a sequence of wffs in which every wff is a hypothesis or the result of applying the formal system's derivation rules (truth-preserving rules) in sequence.

Objective: to reach the conclusion Q from the hypotheses P_1, P_2, \ldots, P_n .

- Types of derivation rules:
 - Equivalence rules (see Table 1.12, p. 23/24): we can substitute equivalent wffs in a proof sequence. One way of showing that two wffs are equivalent is via their truth tables.
 - * commutative
 - * associative
 - * De Morgan's laws
 - * implication

* double negation

Implication seems somewhat unusual, but it is suggested by Exercise 6/7a, section 1.1.

You're asked to prove it in Practice 9, p. 23/24. That is, prove that

$$P \to Q \longleftrightarrow P' \lor Q$$

is a tautology. How would you do it?

- Inference rules: from given hypotheses, we can deduce certain conclusions (see Table 1.13, p. 24/25)
 - * modus ponens: If Q follows from P, and P is true, then so is Q. $P \rightarrow a, P \rightarrow a$
 - * modus tollens: If Q follows from P, and Q is false, then so is P. $P \rightarrow Q$, $Q' \Rightarrow P'$
 - * conjunction: If Q is true, and P is true, then they're both true together. $P \neq P \wedge Q$
 - * simplification: If both Q and P are true, then they're each true separately. $P_{\Lambda}Q \Rightarrow P_{\Lambda}Q$
 - * addition: If P is true, then either P or Q is true. $P \implies P \vee Q$

Practice 10, p. 24/26. Also give step 4!

For a more elaborate example, let's look at #27/29, p. 32/33, which shows that one can prove anything if one introduces a contradiction (e.g. the mensa quiz). Also called an **inconsistency**.

$$P \wedge P' \rightarrow Q$$

1. P
 $h \gamma \rho$

2. P'
 $h \gamma \rho$

3. $P \vee Q$

1. $e \wedge Q$

4. $e \wedge Q$

4. $e \wedge Q$

4. $e \wedge Q$

5. $e \wedge Q$

6. $e \wedge Q$

6. $e \wedge Q$

7. $e \wedge Q$

8. $e \wedge Q$

1. $e \wedge Q$

6. $e \wedge Q$

7. $e \wedge Q$

8. $e \wedge Q$

1. $e \wedge Q$

8. $e \wedge Q$

1. $e \wedge Q$

1. $e \wedge Q$

6. $e \wedge Q$

7. $e \wedge Q$

8. $e \wedge Q$

1. $e \wedge Q$

1.

- The difference between equivalence rules and inference rules is that equivalence rules are bi-directional (work both ways), whereas some inference rules are uni-directional (work in only one direction - this is what inference is all about: from this we can infer that, but we cannot necessarily infer this from that!).

Notice that in the table 1.14 (p. 31/33) some rules appear twice: two uni-directionals can make a bi-directional!

Note for your homework: you are not allowed to invoke the rule that you are trying to prove! Notice that the entries in this table are followed by exercise numbers: it is in those exercises that the results are obtained!

- **Deduction method**: if we seek to prove an implication, we can simply add the hypothesis of this conclusion implication to the hypothesis of the argument, and prove the conclusion of the remaining implication:

$$P_1 \wedge P_2 \wedge \ldots \wedge P_n \to (R \to S)$$

can be replaced by

$$P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge R \to S$$

If you're interested in seeing why this rule works, you might try #45/49, p. 33/34, but think of it this way: we're interested in assuming that all the P_i are true, and see if we can deduce the implication $R \to S$. If R is false, then the implication is true. The only

potentially problematic case is where R is true, and S is false. Then what we want to know is: given that

$$P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge R$$

are true, is S true?

Exercise #32/34, p. 32/33

- Hypothetical syllogism:

$$(P \to Q) \land (Q \to R) \to (P \to R)$$

(and see a whole long list of rules in Table 1.14). This rule might be referred to as **transitivity**.

A new rule is created each time we prove an argument; but we don't want to create so many rules that we keel over under their weight! Keep just a few rules in view, and learn how to use them well....

• Our goal may well be to turn a "real argument" into a symbolic one. This allows us to test whether the argument is sound (that is, that the conclusion follows from the hypotheses).

Exercise #39/41, p. 32/34.

1. J = E Lyp

2. J = C Lyp

3. J Lyp, ded nothing

6. Ex C 4,5 cm;

- The propositional logic system is complete and correct:
 - complete: every valid argument is provable.
 - correct: only a valid argument is provable.

The derivation rules are truth-preserving, so correctness is pretty clear; completeness is not! How can we tell if we can prove every valid argument?!