Section 2.2: Induction

September 12, 2007

Abstract

In this section we investigate a powerful form of proof called in-
duction. This is useful for demonstrating that a property, call it
P(n), holds for all integers n greater than or equal to 1.

Actually, the “1” above is not essential: any “base integer” will do
(like 0, for example: it really only matters that there be a “ground
floor”, or “anchor”).

1 Induction

Induction is a very beautiful and somewhat subtle method of proof: the idea
is that we want to demonstrate a property associated with natural numbers
(or a subset of the natural numbers). As a typical example, consider a
theorem of the following type:

=+l (Ganss's

=

Prove that, for any natural number n, 1+2+3+...+n ="
theorem, stated when he was seven or so).

An induction proof goes something like this:

e We'll show that it’s true for the first case (usually & = 1, called the
base case). While the first case is often k = 1, this isn’t mandatory: we
simply need to be sure that there is a first case for which the property
is true. £ = 0 is another popular choice....

e Then we’ll show that, if the property is true for the k" case, then it’s
true for the (k + 1) case (the inductive step).



e Then we’ll put them together: if it’s true for 1, then it’s true for 2; if
it’s true for 2, then it’s true for 3; .... “to infinity, and beyond!” Or up
the ladder, as our author would say.

Imagine dominoes falling. That’s what it’s like.

The most commonly used form of the principle of induction is expressed
as follows:

First Principle of Mathematical Induction:

1. P(1) is true

2 (VK)[P(k) true — P(k 1 1) true | } — P(n) true for all positive integers n

or, more succinctly,
P(1) A (WR)[P(k) — Pk + 1)] — (¥n)P(n)

where the domain of the interpretation is the natural numbers. This is just
modus ponens applied over and over again. Put modus ponens into an infinie*
loop, because we want it to run off to infinity! This might be the first infinite
loop you’ve ever liked....

Vocabulary:

e inductive hypothesis: P(k)
e basis step (base case, anchor): establish P(1) v
e inductive step (implication): P(k) — P(k + 1) v

Example: (Practice 7, or “Gauss’s theorem”) Prove that, for any

natural number n, 1 +2 +3+ ... +n ="
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Example: Exercise 34, p. 106/114: Prove that 2°~! < n! for n > 1.
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A second (and seemingly more powerful) form of induction is given by the
Second Principle of Mathematical Induction:

1. P(1) is true
2. (Vk)[P(r) true for all r, — P(n) true for all positive integers n
1<r<k— P(k+1) true |

This principle is useful when we cannot deduce P(k + 1) from P(k) (for k
alone), but we can deduce P(k + 1) from all preceeding integers, beginning
at the base case.

Example: Exercise 64/66b, p. 109/116.
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Each of these two principles is equivalent to the Principle of Well-Ordering,
which states that every collection of positive integers that contains any mem-
bers at all has a smallest member.

Example: Prove that the first principle of induction implies well-ordering.

A Final Example: The prisoner’s last request (finite backwards induction!)



