Section 2.4 (2.4/2.5): Recursion and
Recurrence Relations

September 17, 2007

Abstract

In this section we examine multiple applications of recursive defini-
tion, and encounter many examples. Recurrence relations are defined
recursively, and solutions can sometimes be given in “closed-form”
(that is, without recourse to the recursive definition). We will solve
one type of linear recurrence relation to give a general closed-form
solution, the solution being verified by induction.

1 Recursion

A recursive definition is one in which
1. A basis case (or cases) is given, and

2. an inductive or recursive step describes how to generate additional cases
from known ones.

Example: the Factorial function sequence:
1. F(0) =1, and

2. F(n)=nF(n-—1).

Note: This method of defining the Factorial function obviates the need
to “explain” the fact that F'(0) = 0! = 1. For that reason, it’s better than
defining the Factorial function as “the product of the first n positive integers,”
which it is from n =1 on....

In this section we encounter examples of several different objects which are
defined recursively (See Table 2.5, p. 131/139):

e sequences — an enumerated list of objects (e.g. Fibonacci numbers -
Practice 12, p. 122/130 - history, #32/34, p. 142/143)

I'm very fond of lisp:

(defun fib(n)

(case n
(0 1D
(11
(t (+ (fib (- n 1)) (fib (- n 2))))
)
)
> (fib 4)

5
> (mapcar #’fib (iseq 0 8))
(112358 13 21 34)

Note: The differences in examples #31 and #32 illustrate why you
want to stop and think before you attempt a proof!

e sets (e.g. finite length and palindromic strings - Example 34 and Prac-
tice 16 and 17, pp. 124-125/133)

S~ 1 \

.

3

e operations (e.g. string concatenation - Practice 18, p. 126/134)

e algorithms (e.g. BinarySearch - Practice 20, p. 131/139; check out
Example #41, p. 130/139, for the definition of “middle”.)

Or my favorites, such as unix shell scripts. Here’s one one might call
“recurse”, for applying an operations to all “ordinary” files:

#!/bin/sh
command=$1
files=‘1s*
for i in $files
do
if test -d $i
then
cd $i
directory="‘pwd‘
echo "changing directory to $directory..."
recurse "$command"

cd ..
elif test -h $i
then
echo $i is a symbolic link: unchanged
else
$command $i
fi
done

2 Solving Recurrence Relations

Vocabulary:

e linear recurrence relation: S(n) depends linearly on previous S(r),
r<n

S(n) = fu(n)Stn—=1) +---+ fi(n)S(n — k) + g(n)

The relation is called homogeneous if g(n) = 0. (Both Fibonacci and
factorial are examples of homogeneous linear recurrence relations.)

e first-order: S(n) depends only on S(n — 1), and not previous terms.
(Factorial is first-order, while Fibonacci is second-order, depending on
the two previous terms.)

e constant coefficient: In the linear recurrence relation, when the co-
efficients of previous terms are constants. (Fibonacci is constant coef-
ficient; factorial is not.)

e closed-form solution: S(n) is given by a formula which is simply
a function of n, rather than a recursive definition of itself. (Both Fi-
bonacci and factorial have closed-form solutions.)

The author suggests an “expand, guess, verify” method for solving recurrence
relations.

Example: The story of T

1. Practice 11, p. 121/130

TU) <

T(n) = T~ *3 ~ 7

2
{\/‘/l/ :‘L, “91 ‘3; T 7

W\

2. Practice 19, p. 128/137: Here is the recurrence relation for Example
11, p. 121/130, in lisp:

(defun Tee(n)
(if (integerp n)

(cond
((>=n 2)
(+ (Tee (-n 1)) 3)
)
((=n 1)
1
)
(t (print "Tilt! Only positive ints allowed..."))
)
(print "Tilt! Only positive ints allowed...")
)
)
> (tee 2)
4

> (mapcar #’tee (iseq 1 10))
(1 47 10 13 16 19 22 25 28)

3. Practice 21, p. 133/148

T(V\S‘C [N -7
(1) < | /

2 =
}%row, Tl clowed i~ S0l 57 A A

A,_ul\a/ e
> 0 Pl = Pleen)

Ple)! T(k) = 3&~2
P2V (e = (s -2
Ve Ty = 3 0ks P

Tlesdy = T (k) +3 = ¥e-7 + 3 = 3lk+)-2

Example: general linear first-order recurrence relations with constant coet-
ficients.

S(1)
S(n) S(n—1)+ g(n)

“Expand, guess, verify” (then prove by induction!):

a
C

S(n) = " 18(1) + z; i)

LY = e
S(1yz SN + glt) = Ca + s5(2)
s = ¢ $) + ()
N C_[c_o\-(— 3(1)7 v o5(3)
Sl4) = o 4 (3) + 6(4)
c[c[c.s“nj(zﬂ 4_3(7ﬂ + 5(4)

C..lk + Q_'is('LB +QC‘7('§7 + jlq)

r

g(n) = Q’\—la\ + ch-15(1)+ QA'37(1)4—,.,*- 3(»'\)

S("y - cy\“la_ - Z C_A-Aaéft)

AT

D«”M~<\Lr4~ﬂ:,_~ l,,> ye A LR O~ ¢

o

734\.{_,/ éC/) = C
$(2y = ca + 50)

:\ A7$‘—~ m~ PU") 6

Sy =
§L°,~, [)(Lcm\

$le) = o SUe) + 5““")

_ N SN S S 3 (lew
= L’Eu o+ _Z’ C 5L/L)_] 3)
>

AL -

A .
Q@u,) ,,a\ . Zcueu)mju) N

«T 7 7\ J

1) = - i) — A ‘
= C,C) S Z_c,“)’ () /
AT
T = 1T Ay = 3
T Y e
c = |) QD(-'\\ = 3 ; al =
TRy = | & > T3
ATT
-+ I3

RSB I
‘Z’—ZI’\'\'l"’S ZV\V’Z/ /

—
—

