Section 2.5 (2.6, 6th edition):
Analysis of Algorithms

September 19, 2007

Abstract
By analysis of algorithms we mean the study of the efficiency
of the algorithms. In this section we will measure the efficiency of
an algorithm by counting operations (and of course we are generally
shooting for a small number, in our endless pursuit of optimization).

1 Counting operations directly

In algorithm SequentialSearch (p. 148/170), we search for element z in a
list of n items. SequentialSearch is a direct method, by comparison with
algorithm BinarySearch (p. 130/138), which is recursive. s one algorithm
more efficient than the other?

In the SequentialSearch, there are three rather interesting cases:

e we find z on the very first try (total comparisons: 1!). This is called
the “best-case” scenario.

e we find x on the last try (total comparisons: n). This is the “worst-
case” scenario.

e On average, we require (n -+ 1)/2 comparisons, remembering Gauss: we
sum up all the cases from 1 to n, and divide by n:

i+ 1) n+1l

o 1 2 2

We will consider the worst-case scenario as the benchmark.

2 Counting Using Recurrence Relations

Algorithm BinarySearch is recursive: it calls itself. Starting from a list of
length n it makes one comparison and then calls itself with a list of half
its initial length. Hence the number of comparisons for the list of length n,
C(n), would be (in the worst case)

C(n) = C(floor(n/2)) + 1

and C'(1) = 1. That floor function is a pain, but is necessary since n may be
odd.

Forgetting the floor for the moment, use the “expand, guess, and verify”
approach: in the worst-case scenario, the algorithm will find the element (or
not) on its last check (when it’s down to a list of length 1).

Cln)=C(n/2) + 1= (Clnjd) + 1) +1=((C(n/8) +1) + 1) + 1= ...

Obviously this is only going to work easily (in the sense that C'(n/8), etc.,
make sense) if n is a power of 2. Assume therefore that n = 2, for integer
m. This allows us to throw away the floor function, and makes all quotients
reasonable.

Consider a change of variable: in
C(Qm) — O(Qm_l) + 1
we define T(m) = C(2™) (think of T" as a composition of functions, C' and
21)’ hence ~—————
Tm)=T(m-—1)+1
Note that T(0) = C(1) = 1. We can solve easily to get a closed-form solution

of ~m—
n= 14

T(m)=m+1 loa, ~ = m~ |

Hence, C(n) = C(2™) = T(m) = m + 1 = loga(n) + 1. This compares quite

favorably with the worst-case estimate from SequentialSearch, which would

be n (linear in n).

‘DSLL

(For those of you who’ve forgotten, the log function grows much more slowly
than a linear function.)

Let’s look at the general recurrence relation of the “divide and conquer”
variety: given

S(l)=a

5(n) = ¢S5(n/2) + g(n)

Assume n = 2™ for some integer m. Then

S(2%) =a
S(2m) — CS(Qm_l) + g(Qm)
Now we perform the change of variables: let T'(m) = S(2™), so that
-—_—
T0)=a
T(m)=cT(m—1)+ g(2™)

Using formula (8) of section 2.4/2.5, p. 134/150, we get
T(m) = "= T(1) + Y- g(2)
=2
Then reindexing, since we start with 0 rather than 1, we get

T(m) = c"T(0)+ i_”: g (24

4a) = ¢ $1%)

Finally, substituting back in S and n, we get

—) 4 3(/\)
ogo N

2 S(Qm) — Clog2na+ Z Clog2 7L—ig(2i)
i=1

Whew!

The BinarySearch algorithm starts with a sorted list, which is not a require-
ment for the SequentialSearch algorithm; so the comparison isn’t really fair.
What if we add a sort?

Example: Exercise 13/18, p. 156/179

Example: Exercise 14/19, p. 156/179

Example: Exercise 15/20, p. 156/179

m.

W~ - r"—cv\f"f‘!f\wf“'/“%d\’ N~ A

§U(7L-‘;D oo list o 4 /""‘bq]-)\' Lo CU) =0

QC'») - C(“‘/L) — n-|

-/_\——N—/

Nj") ﬂle- L\“lM ‘gé

lwsh A/L/
Example: Exercise 16/21, p. 156/179
c -2
3(:\): w-\
a™=p
| \aﬁ'\ l -
oY\ n oqN “ /N ’
Clr) = ¢ 2 Ly 5 ¢) 6/7_*)
log Py

z 27 -

.y

1

\uym \ .
lo 917 A
= 2 - (L)
A<l \or71\ lp?'\—/’\
[0y A~
r !

So we can carry out the BinarySearch algorithm following a MergeSort (see
the exercises above for its definition), with

K loga(n) + 1+ nlogs(n) —n+ 1

or
(n+ 1)loga(n) + 2

operations, compared with n operations for SequentialSearch - which wins in
this case! (n+1)loga(n) is superlinear - grows faster than the linear function
n.

If we had started with a sorted list, however, it would make no sense to use
SequentialSearch, since BinarySearch is so much more efficient in that case.
Also, if we are doing multiple searches with the same lists, then the costs
of not sorting begin to add up. The sorting is an initial (or fixed) cost; then
there is a benefit each time one sorts thereafter for the merge-sort. Hence we
can compute the cut-off value of the number of searches for a given list size
which would justify sorting and then using the binary search algorithm.

3 Other criteria

An algorithm should not be analyzed quite so one-dimensionally as we’ve
done here, of course: there may be other issues (such as how easily paral-
lelized an algorithm is, for example) which are more important than simple
operation counts.

As demonstrated in the case of the Euclidean Algorithm (or ged) in this
section, we may simply be shooting for an upper bound on the number of
operations required (even worse than the worst case scenario!), when actual
worst-case numbers are hard to come by.

The Euclidean Algorithm finds the greatest common denominator of two
integers (See p. 114/122).

Actually, in this case, worst-case numbers are easy to get: the worst case
for the Euclidean algorithm is a pair of consecutive Fibonacci numbers (there
they are again, those rascals!).

This is investigated in problems 20-23/25-28. An example pair of consec-
utive Fibonacci numbers would be 5 and 3, or 89 and 55.

\ot',v\ lo _r
“ D_l'.\- I
[0y ~
- lojr\ 2)1' hand -E-.
P
U W leg'\"’

—_—

[~ r
\o,_“\-
S

|« T
AN

3“')\ " R-(\—/-V“ o r,v)/(/v-v%'v\,& o€

7 30_4 (a’é> i~ T Wust S
,,W‘- V{QIA,\ ‘/"O

e (%2, skt)

Q(“) - I-C,(n/w) + 2
C/(\O - D /

C_'-'-, S(V‘):'L

