Section 5.1: Graphs and Their
Representations

October 8, 2007

Abstract

We are introduced to definitions of graphs, various kinds of graphs,
characteristic features of graphs, and even a few theorems about graphs
(for example, we learn when two graphs are the same, or isomorphic,
even when they look strikingly different).

We then take a look at planar graphs (in particular at FEuler’s
formula), and computer representations of graphs (adjacency matrices,
adjacency lists).

1 Definitions

A graph is defined loosely as a set of nodes, and a set of arcs which connect

some of the nodes. —

More formally, we have the following
Definition: a graph is an ordered triple (N, A, g) where

N = a nonempty set of nodes, or vertices
A = aset of arcs, or edges
g = a function associating each arc a with an unordered pair {x,y} of nodes.



x and y are the endpoints of the arc. g is a function g : A — {{z,y}|lz € N
and y € N}.

Example: Practice #1, p. 342/404.
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Definition: a directed graph is an ordered triple (/V, A, g) where

N = a nonempty set of nodes, or vertices

A = aset of arcs, or edges

g = a function associating each arc a with an ordered pair (x,y) of nodes.

so g is a function g : A — {(z,y)|z € N and y € N}.

Example: Exercise #1, p. 361/423.
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2 Examples of graphs in action (p. 344/405)

e Road map of Arizona

e Ozone Molecule

e “data flow diagram” for state auto licensing office
e ‘“star topology” for network

e neural network

e Map of Rabies-infected towns in Connecticut

3 Graph Terminology

Using the graph terminology handout to classify your graph. Today the
vocabulary we want to focus on is as follows:
e degree of a vertex

e adjacent vertices
e parallel edges

e loops

e simple -~

e complete

e path

e cycle

e reachable

e connected



Example: Exercise #2, p. 362/423.

Y
£3 C\I.{/ c-l‘ él'wa'\—
9
2° a¢ b, No R O
L\ i’ o ) o(,/ Lx"YH’
o_/.?' / Q \/ts
a. +
¢ ™ PO S N

€. ’7,-"(:'3
L brg b oy, =y, 07 5Y

7,
%’{' \.\'\- ’Cl

4 Special Graphs

By K,, we will understand the simple, complete graph with n nodes.

Example: Exercise #5a, p. 362:/423 Draw K.




A bipartite complete graph K, ,, is a graph of N nodes which break into
two groups, V7 and N,, of size m and n respectively, with the property that
two nodes x and y are adjacent < x € N; and y € Ns.

Example: Exercise #5b, p. 362/423: Draw Kj 4.
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5 Isomorphic Graphs

The idea of isomorphism is that two structures can be “morphed” into each
other (they are in some sense identical, up to labelling). Our objective, in
general, is to figure out the “morphism” (isomorphism - same form!).

Example: Look at Figure 5.17, p. 350/411: can you morph the two graphs
together?
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Definition: Two graphs (N, A1, 91) and (Ng, Ay, g2) are isomorphic if
there are bijections (one-to-one and onto mappings) f; : Ny — Ny and
fo: Ay — Ay such that for each arc a € Ay, g1(a) = {z,y} <= g[f2(a)] =
{fi(z), fi(y)} (replace braces by parentheses for a directed graph).

Example: Practice #7, p. 350/412. If you managed to morph the two
graphs in Figure 5.17, then you should be able to “see” the rest of function

fo.

Theorem: Two simple graphs (N, A1, g1) and (Ng, A, g2) are isomorphic
if there is a bijection f : Ny — Ny such that for any nodes n; and n; of Ny,
n; and n; are adjacent <= f(n;) and f(n,) are adjacent.

Example: Exercise #11/15, p. 363/425.
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\v Here are some tests for determining when two graphs are not isomorphic:
/7) - 1. The graphs don’t have the same number of nodes.

2. The graphs don’t have the same number of arcs.
3. One graph is connected and the other isn’t.
\& 4. One graph has a node of degree k and the other doesn’t.
A’ e”] 5. One graph has parallel arcs and the other doesn’t.
v 6. One graph has loops and the other doesn’t.
7. One graph has cycles and the other doesn’t.

\ This list is not complete, however: sometimes things get trickier than this
(as shown in Example 12).

Example: Exercise #8/12, p. 362/425.
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6 Planar Graphs

A planar graph is one which can be drawn in two-dimensions so that its arcs
intersect only in nodes. “Designers of integrated circuits want all components

in one layer of a chip to form a planar graph so that no connections cross.”
(p. 352/413)

Example: Revisit #11/15, p. 363/425.

Euler’s Formula for simple, connected planar graphs states that
r—a-+n=2

where n is the number of nodes, a is the number of arcs, and r is the number
of regions (including the infinite region surrounding the graph).

Think “ran to” to remember the formula....

Hey! What’s induction doing in here? Fuler’s formula is proven by induction,
on a, the number of arcs, and a consideration of cases (node of degree 1; no
node of degree 1).

Note: about Euler (Born: 15 April 1707 in Basel, Switzerland Died: 18 Sept
1783 in St Petersburg, Russia). He was so prolific that his work is still being
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compiled. He went blind in his old age, and became even more prolific! He
was an incredible calculating machine.

Example: Revisit #11/15, p. 363/425., for a check.
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The following theorem provides some estimates on the relationship between
the number of arcs and nodes that a planar graph may possess:

Theorem: For a simple, connected, planar graph with n nodes and a arcs,
1. If the planar representation divides the plane into r regions, then
n—a+r=2

2. lf n > 3, then
a<3(n-—2)

3. If n > 3 and there are no cycles of length 3, then
a<2(n-—2)

From this theorem we can deduce that Kj is not planar, since it has 5 nodes,
and 10 arcs, and 10 > 3 - 3.



Also from this theorem we can deduce that K33 is not planar, since it has 6
nodes, and 9 arcs, and no cycles of length 3: 9 > 2- 4.

Example: Exercise #22/26, p. 365/427.

7 Computer Representations of Graphs

We want to examine two different representations of graphs by a com-
puter:
e the adjacency matrix, and
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1C — A matrix is basically a spreadsheet: a rectangular data set of numbers
s ol indexed by rows and columns.

An adjacency matrix for a graph with N nodes is Nz/N, where the rows
and columns of the matrix represent the vertices. 1If the graph is undirected,
then the element a;; of the matrix is non-zero <= mnodes ¢ and j are
adjacent; if directed, then the element a,;; of the matrix is non-zero <=

there is an arc from node 7 to node j.
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In our textbook, the element of the matrix a;; = p, the number of arcs
meeting the criteria above.

Example: Practice #16, p. 358/419.
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For an undirected graph the adjacency matrix is symmetric (which means
that we can reduce storage by about half); for a directed graph, the matrix
may well be unsymmetric.

Let’s look at a nice web page, with an example of a directed graph
Example: Exercise #33/37, p. 366/428.
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e This 1990 commuting patterns page might be modelled as a directed,
weighted graph. lts adjacency matrix would be exactly the numerical
portion of this table, and it would be a full matrix.

e A map of Rabies-infected towns in Connecticut gives rise to an undi-
rected graph. The towns are nodes, and an arc is created if two towns
are adjacent. This will lead to a sparse symmetric adjacency matrix,
however, as very few towns are adjacent to any particular town.

An adjacency list might be a better storage method for graphs with
relatively few arcs: we effectively store only the non-zero entries of the adja-

cency matrix, in a linked list:

Example: Exercise #48/52, p. 367/429.
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The redundancy in drawing the adjacency list for an undirected graph is
evident. This is eliminated for a directed graph:

Example: Exercise #57/61, p. 367/430.




