Section 5.2: Trees and their
representations

October 10, 2007

Abstract

Trees are defined, some applications are presented, some computer
representation strategies are considered, and tree traversal algorithms
are discussed. Trees are file cabinets: good ways to store stuff. Once
it’s stored, however, we’ll need to retrieve it; hence we must be able
to efficiently traverse the tree checking what’s in each node!

1 Tree Definition and Terminology

Definition: a tree is an acyclic, connected graph with one node designated
as the root node.

“Because a tree is a connected graph, there is a path from the root to any
other node in the tree; because the tree is acyclic, that path is unique [pro-
vided that no arc is used twice].” p. 371/434, Gersting.

The set of trees can also be defined recursively, as follows:
e Base case: A single node is a tree, with that node as root.

e Inductive step: The graph formed by attaching a new node r by a
single arc to each root of trees {7} is a tree.

Example: Create a tree on a 4x6 card. Some of you should make rather
ordered trees; others might think of very strange trees.

Use this tree terminology handout
http://zappa.nku.edu//classes/mat385/highlights/trees. html
to classify your tree.

Exercise #1, p. 381/444.

Exercise #2, p. 381/444.

o M
5. N
e, N
A, |
0 ~or

2 Examples of trees in action (p. 372/435)

e My favorite: the UNIX operating system (with root node called root!)

e The Hexstat probability demonstrator is based on what looks like a
loose extension of a full binary tree, what we might call a directed
acyclic graph; and on the binomial theorem.

Here was an interesting example of what I'm talking about. Trees
and tree-like graphs appear in funny places: 1 was listening to NPR
(3/13/05) and Will Short, the Puzzle Guy, gave this puzzle:

This is a graph like the Hexstat probability generator (draining from
top to bottom): connected, directed, acyclic. Let’s turn it into a tree,
by duplicating some nodes:

/ W\
AL I

s
R G G T

In traversing this graph from root to leaf, in four possible ways, every
way spells out a word: WAR, WAG, WIG, WIT; he asked us to create
a tree of depth 3 that uses the ten letters in ANALOGIES+K and does
the same thing.... (as a hint, he said that an A is the left-most leaf,
only not in those those words!).

e Family “trees” (if intermarriages are forbidden!)

e Org charts (most people report to only one person above them)

3 'Tree Representations

Binary trees are special in that their children are classified as left and
right. So in order to represent them, we need to specify left to right children

for each node. Two representations are shown in Example 23, p. 375/437: a
two-column array, and an adjacency list with three-field records.

. IH
Practice 20, p. 375/437. CL | ‘

Y
k NS
Hq 1§
g —
g8 °) o ¢
. N [
ar

4 Tree Traversal Algorithms

We'll look at three tree traversal algorithms, which are represented recur-
sively — ah, recursion! — as follows (see p. 376/438):

preovder | root left right
inorder | left root right
|||1'l.‘\-'f'|'ll'||r-' ¥ left Tight root

Check out the animation showing how a tree is traversed by the three algo-
rithms, at http://zappa.nku.edu//classes/mat385/highlights/traversal.htm.
It is clear from this animation how one handles non-binary tree traversal for
pre- and post-order; for inorder, our book’s algorithm would do “left, root,
right, righter, ..., rightest”!

Note the nice definitions of these traversal algorithms based on the recur-
sive definition of a tree.

Exercise #18, p. 384 /447 <y e
(=

pre - a‘o&c@'/jdk/l

v .
¢ -Cz\ﬁ”‘/\,i "”’eé%kii

/”5+—&bj—cjc_[\/tdo\

L}

Each traversal method has advantages in different situations. The example
we consider is that of binary trees as representations of arithmetic expressions

Example 23 and Figure 5.40, p. 374/436.

- prefr = T r Tk x YD
T ¥
\ /\ I./\ﬂz;;ﬁ - (7.+><)~(y*?>
Fooxo¥ 3Ws+qﬁv>f-2;<‘r~/3*“

e Inorder traversal writes the expressions in the most familiar form from
our early schooldays (Infix notation). Inorder traversal requires the
introduction of parentheses to make the meaning of the expression
unique.

e Postorder traversal allows us to eliminate nodes once traversed (if we
want to deallocate storage, for example - check, in the animation above,
that you can deallocate each node as soon as it’s been visited!). This
is called Reverse Polish Notation, named for the Pole Jan Lukasiewicz.

“Why Did/Does HP Use RPN?

In the years that followed, computer scientists realized that RPN or
postfix notation was very efficient for computer math. As a postfix
expression is scanned from left to right, operands are simply placed
into a last-in, first-out (LIFO) stack and operators may be immedi-
ately applied to the operands at the bottom of the stack. By con-
trast, expressions with parentheses and precedence (infix notation)
require that operators be delayed until some later point. Thus, the
compilers on on almost all modern computers converted statements to
RPN for execution. (In fact, some computer manufacturers designed
their computers around postfix notation.)” (from the link above, on
http://www.hpmuseum.org/rpn.htm)

e Preorder traversal represents the expressions in Polish notation (which
is what LISP uses (my favorite language)). Like postorder, preorder
doesn’t require parentheses (provided the operators are binary). If not
all operations are binary, then parentheses creep in, as LISP lovers (and
haters!) know only too well....

Exercise #6, p. 381/444 (and write the expression in prefix and postfix
notation).

[Cex2) e g Jo[(1+R (S+3Y)

+ /(*LX/’
/\ + # T (L L Y
* ¥ ¥+l X +53
A\ /\
T 4 +

festhy @ 2ty * | x
Exercise #28, p. 385/448 J.— rs.t

(/_'L ar‘M If @ é < 7{ Q
l.~o/kL4/_’ ; b e A C \-e_,
Df‘au-\ ~ weo g«-)%SfT'-\? T .

O

5/ \c.

/N
AN e

