Section 6.4: Traversal Algorithms

October 31, 2007

Abstract

We’ve already examined some tree traversal algorithms (pre-order,
in-order, post-order), and considered their relative advantages. We
now want to open the notion of traversal to all graphs (we certainly
might want to write out the nodes of an arbitrary graph!). We exam-
ine and compare two recursive methods: depth-first and breadth-first
graph traversals.

Note: we're only coverin rough Practice 16 (p. 453/519).

Important Convention: for the problems, we should stick with the

7%, convention that, given a choice, we should choose nodes in alphabetic %
order. This assures that we all end up with the same answer, which
maximizes sanity....

1 Depth-First versus Breadth-First Traversal

1.1 Depth-First

The idea behind the depth-first strategy is to burrow down into the graph,
rather than spread out as one will in a breadth-first traversal. The depth-first
algorithm is recursive. Have a look at the algorithm on p. 448/514.

IR EIr LR

o S 9L I TN g oy

A\.Ibfvndfwﬂ:al GlJflﬂu.k.dlm

| J
0*(1(*/"’5

< U
;.MM,,% <

o <
e— ~
a ('3
) /o
V] O g Y o In”)
d O = <

. y \@
— J [Va}
: l e v L
- - - - \- AAC q“A o\ =< <X ul
3 w9
X S

r»PlL 3u|>/,.>rvﬂnalﬂ\m.

(| = 4 vrodes

C\LC."(‘\Ojﬂ_L\Ik

((ﬁ /QIFS"I'_ ;

w R

l’Jf'L&.l’- "\)l‘\-(/\

P
[

Nowo [ebs 4 breod L Anr

(L

(00X vV oo ¢ ic.—N

—

2. Find its neighbor nodes (ordering them lexigraphically, again for san-
ity’s sakel!);

3. For each unmarked neighbor z, DepthFirst(G,x)

Example: #3, p. 456/521

@LG\L-CDJLL\s/]A

1.2 Breadth-First

Examine the breadth-first algorithm on p. 450/516. It uses a queue to
traverse the nodes, popping elements off the queue as all of their adjacent
nodes are also marked.
1. Pick (mark, write, and enqueue) the start node; then, while the queue
is non-empty,

2. Find the front-of-the-queue’s neighbor nodes (ordering them lexigraph-
ically to be kind);

3. Mark, write, and enqueue those which are as yet unmarked;
4. Dequeue the front element of the queue;

5. Continue until the queue is empty.

Example: #13, p. 457/522

&ovr-tatéllxﬁ/.bj
11 2 2L A3 3«

s

/

2 How do these graph traversal algorithms
behave for trees?

Look at an example (try a binary tree).
e Depth-first equates to preordering;

e Breadth-first does just what you’d expect! From the root on down, by
depth.

3 Depth-First Application

These types of traversal algorithms are useful for operating on graphs. For
example, I wrote some lisp code to find the shortest distance between two
nodes z and y, using a depth-first algorithm (recursively). The algorithm is
not particularly good; it was implemented because a student brainstormed it
in a previous class, and it was a neat (albeit not particularly efficient) idea.
It works like this:

e Start at the begin node;

¢ Find all adjacent nodes;

e Find the shortest distance from each of those nodes (recursively) to the
destination node using a trimmed graph in which the start node has
been eliminated (marked), and marking each one as finished once its
shortest distance has been determined.

Note that | used the adjacency matrix representation, which is good for “full”
graphs, but wasteful for sparse ones.

To test my algorithm, | ran it on the graph of Exercise #15, p. 444/510 for

every pair of nodes (to compare the result with Floyd’s algorithm). You can

try out this procedure using this this web script:
http://www.nku.edu/tddsroomelonga/cgi-bin /cgi-tcl-examples/generic/graph /graph.cgi

