Section 1.3: Vector Equations

January 23, 2008

Abstract

Vectors provide a wonderful way for us to write systems of equations compactly. You should already be familiar with two-d and three-d vectors from calculus classes. We now want to extend notions from those spaces into n-dimensional space. For example, vector addition is carried out component-wise.

The interesting new concept introduced in this section is that of **span**: roughly, the span of a set of vectors $\{\mathbf{v}_1, ... \mathbf{v}_p\}$ is the subspace generated by linear combinations of the vectors \mathbf{v}_i . The span represents the set of vectors \mathbf{b} that can be solutions of the system

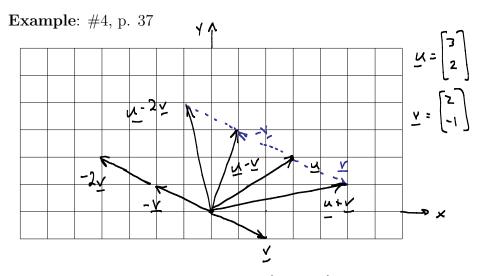
$$a_1\mathbf{v}_1 + \ldots + a_p\mathbf{v}_p = \mathbf{b}$$

Definition: A **vector** is a matrix with only a single column ("column vector"). The entries are called the **components** of the vector.

- **zero vector**: the vector whose components are all 0: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- one vector: the vector whose components are all 1: $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
- scalar multiple of a vector: a product of a constant ("scalar") and a vector, the operation being carried out component-wise: e.g.

$$\alpha \mathbf{v} = \left[\begin{array}{c} \alpha v_1 \\ \alpha v_2 \\ \alpha v_3 \end{array} \right]$$

Note: here's a notational issue. Vectors will generally be in bold-face (on the board I'll either underline them, or overline them, depending on my mood, time of day, and what I had for breakfast). The components of named vectors are generally written with the same name, only without bold/overline/underline, and with subscripts. Notice that the components $\{v_1, v_2, v_3\}$ of the vector \mathbf{v} above are not at all the same as the vectors listed in the abstract, $\{\mathbf{v}_1, ... \mathbf{v}_p\}$. Components are (generally) numbers....


• **vector sum**: the vector created by adding two vectors, the sums being carried out component-wise. Naturally the vectors must have the same length....

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$$

Note: Geometrically, the sum of vectors can be found using the "parallelogram rule": the butt of vector \mathbf{v}_2 is placed at the tip of the vector \mathbf{v}_1 , and the vector from the butt of \mathbf{v}_1 to the tip of \mathbf{v}_2 is the sum.

• linear combination of vectors: any sum of vectors scaled by coefficients. E.g.,

$$\alpha \mathbf{u} + \beta \mathbf{v} = \alpha \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \beta \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} \alpha u_1 + \beta v_1 \\ \alpha u_2 + \beta v_2 \\ \alpha u_3 + \beta v_3 \end{bmatrix}$$

• span: the span of a set of vectors $\{\mathbf{v}_1, ... \mathbf{v}_p\}$ is the subspace generated by linear combinations of the vectors \mathbf{v}_i . The span represents the set of vectors \mathbf{b} that can be solutions of the system

$$a_1\mathbf{v}_1 + \ldots + a_p\mathbf{v}_p = \mathbf{b}$$

Q: What is the geometry of a span? What cases should be considered?

• The vector equation

$$a_1\mathbf{v}_1 + \ldots + a_p\mathbf{v}_p = \mathbf{b}$$

has the same solution as the linear system whose augmented matrix is

$$\begin{bmatrix} v_1 & v_2 & \dots & v_p & b \end{bmatrix}$$

In this case, the variables – the unknowns – would be the coefficients a_i , and a solution would consist of the appropriate possibilities of values for those coefficients.

Example: #9, p. 37

Example: #12, p. 38. In this problem we throw you for another loop, by using the letter "a" for <u>vectors!</u> You have to pay attention, and not let us mess you up too badly just by poor notation....

- Two vectors are equal only if they have the same dimensions, and their components are the same.
- Algebraic properties of the **vector space** \mathbb{R}^n : for all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d,

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 commutative
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ associative
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{u}$ additive identity
(iv) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ inverses (additive)
Proof of (i) i $\mathbf{u} = \begin{bmatrix} u_1 + v_1 \\ u_n \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$
 $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_n + v_n \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_n + u_n \end{bmatrix} = \mathbf{v} + \mathbf{u}$ at

(vii)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

Example: #21, p. 38

M= []
$$V = []$$
 Show that $[h]$ is in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ in the space $[h]$ in the space $[h]$ in the space $[h]$ is in the space $[h]$ is in the space $[h]$ is in the space $[h]$ in the space $[$

$$\sim \begin{bmatrix}
2 & 2 & h \\
0 & 2 & k + 2h
\end{bmatrix} \quad \begin{array}{c}
c_{0,1} \leq h + 2h \\
- \begin{bmatrix}
2 & 0 & h - (k + 2h) \\
0 & 2 & k + 2h
\end{array} \right] \sim \begin{bmatrix}
1 & 0 & 4h - 2h \\
0 & 1 & 4h + 2k
\end{array}$$

Example: #27, p. 38

$$V_{i} = \begin{bmatrix} 20 \\ 550 \end{bmatrix} \qquad V_{L} = \begin{bmatrix} 30 \\ 500 \end{bmatrix}$$

$$5) \quad \chi_{1}\begin{bmatrix}20\\550\end{bmatrix} + \chi_{2}\begin{bmatrix}30\\500\end{bmatrix} = \begin{bmatrix}150\\2925\end{bmatrix}$$

we solve this system to obtain the solution

$$\begin{cases} x_1 = 1.5 \\ x_2 = 4 \end{cases}$$
 (days)

$$\frac{1}{4} \cdot \frac{1}{6400} = \frac{1}{270} = \frac{1}{$$