Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$

January 28, 2008

Abstract

We encounter yet another representation for a system of linear equations – will it never end?! This is the last we'll examine, and probably the most important. Theorem four pulls all these forms together: spans, pivots, linear combinations, and matrix equations collide!

"A fundamental idea in linear algebra is to view a linear combination of vectors as the product of a matrix and a vector." p. 40

Matrix/vector multiplication is defined. One form that I find particularly useful is the so-called "row-vector rule": a row of the matrix slams into the variable vector \mathbf{x} , to produce a single entry in the \mathbf{b} vector.

Definition: product of matrix A and vector \mathbf{x}

If A is an $m \times n$ matrix, with columns \mathbf{a}_1 , $\mathbf{a}_2 \dots$, \mathbf{a}_n , and if \mathbf{x} is in \mathbb{R}^n , then the product of A and \mathbf{x} is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights; that is,

$$A\mathbf{x} = [\mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n$$

Example: #4, p. 47

$$\begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \left[1 \cdot \begin{bmatrix} 7 \\ 5 \end{bmatrix} + \left[1 \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right] + \left[1 \cdot \begin{bmatrix} -4 \\ 2 \end{bmatrix} \right]$$

We now have four ways of writing a system of equations(!), as given in

Theorem Three (p. 42): If A is an $m \times n$ matrix, with columns \mathbf{a}_1 , $\mathbf{a}_2 \dots$, \mathbf{a}_n , and if \mathbf{x} is in \mathbb{R}^n , the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \dots \quad \mathbf{a}_n \quad \mathbf{b}]$$

Example: #9, p. 47

$$3x_{1} + x_{2} - 5x_{3} = 9$$

$$x_{2} + 4x_{3} = 0$$

$$x_{1} \begin{bmatrix} 3 & 1 & -5 & 9 \\ 0 & 1 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 & -5 & 9 \\ 0 & 1 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 & -5 & 9 \\ 0 & 1 & 4 & 0 \end{bmatrix}$$

Existence of solutions is given by the following theorem:

Theorem Four (p. 43): Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- (i) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (ii) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (iii) The columns of A span \mathbb{R}^m .
- (iv) A has a pivot position in every row.

Example: #14, p. 48

Let
$$u = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix} + A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$$

Is $u = \begin{bmatrix} 5 & 7 & 7 & 2 \\ 0 & 1 & -1 & -3 \\ 1 & 3 & 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 7 \\ 1 \\ 3 \end{bmatrix} x_2 + \begin{bmatrix} 7 \\ -1 \\ 0 \end{bmatrix} x_3 = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$

Ax = u ; $\begin{bmatrix} 5 & 7 & 7 & 2 \\ 0 & 1 & -1 & -3 \\ 1 & 3 & 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 7 \\ 1 \\ 3 \end{bmatrix} x_2 + \begin{bmatrix} 7 \\ -1 \\ 0 \end{bmatrix} x_3 = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$

A handy way to think about matrix multiplication: Row-Vector rule for computing $A\mathbf{x}$

If the product $A\mathbf{x}$ is defined, then the *ith* entry in the vector $A\mathbf{x}$ (yes, it's a vector!) is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x} .

Example: Revisit #4, p. 47

Theorem Five (p. 45): If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , and c is a scalar, then:

(i)
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

(ii)
$$A(c\mathbf{u}) = c(A\mathbf{u})$$

Example: #35, p. 49

A_{3×1};
$$Y_{11}Y_{2} \in \mathbb{R}^{3}$$
; $W = Y_{1} + Y_{2}$
Suppose $\exists x_{1} \text{ and } x_{2} / A_{x_{1}} = Y_{1} \text{ and } A_{x_{2}} = Y_{2}$.
How do we know that $AX = Y_{1}$
consistent?
$$A(X_{1} + X_{2}) = Ax_{1} + Ax_{2} = Y_{2}$$

$$X = Y_{1} + Y_{2} = W$$

 $A_{4} = 2$ $Ts \quad A_{x} = 42 \quad consistant ?$ $X = 44 \quad is \quad a \quad sola :$ $A(4_{4}) = 4(A_{4}) = 42$