Section 1.5: Solution Sets of Linear
Systems

January 30, 2008

Abstract

This section shows us how to think of the solution set of a
linear system geometrically, in terms of vectors. The main trick
is to find the solution of a related system, the homogeneous
system, and then find a particular solution to the system.

The solutions are some sorts of parametric representations
of points (if only a trivial solution of the homogeneous equation
exists), lines, planes, hyper-planes, etc.

The homogeneous equation Ax = 0 has a nontrivial solution (that
is, other than the zero vector x = 0) if and only if the system of
equations has at least one free variable.

Theorem 6: Suppose the equation Ax = b is consistent for some given
vector b, and let p be a particular solution. Then the solution set of
Ax = b is the set of all vectors of the form w = p + v;, where vy, is
any solution of the homogeneous equation Ax = 0.

Example: Proof (by linearity): #25, p. 56
(a) (Show that w js a sclution. |
Suppose p is a solution of Ax = b, so that Ap = b. Let vy

be any solution of the homogeneous equation Ax = 0, and let
w = p + vp. Show that w is a solution of Ax = b.

Auz Alpev) = Ap+ Ay,
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(b) (Show that w is the only tvpe of sclution. ]

Let w be any solution of Ax = b, and define v, = w — p. Show
that vy, is a solution of Ax = 0. This shows that every solution
of Ax = b has the form w = p + v, with p a particular solution
of Ax = b and v}, a solution of Ax = 0.

A(v) = Alu-p) = Ao - Ap
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Example: #8, p. 55 [0 L 9 —¢
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Summary N . 0

You might relate the solutions of these equations to your Whistory
from calculus as follows:
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la11a12a13] { T2 J = [0]

X3

is the same as
(a11, 12, ays) - (21, 22, 23) = 0
It says that the row vector (which we might call A,) is perpendicular,

or orthogonal, to the solution vector x.
Then
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<a11,a12,a13> : <$1,$27I3> =0

is the same as

and
<a21,a22,a23> : <$1,$27I3> =0

i.e., that the x is orthogonal to both row vector (A; and A,).

Now if
1

[a11a12a13] T2 :[b]
I3

this says that
(a1, ag, ai3) - {21, 29, 23) = .

That is, that the projection of x onto A; is equal to b
You remember what this means: that

A - x = |A]]x]cos(f)
where ¢ is the angle between the vectors. Hence
Ax=Db

says: “the projections of x onto the rows of A make up the components
of b7, and if
Ax =0

then x is orthogonal to every row of A; or, alternatively
“x is orthogonal to the span of the row vectors of A”.

The bang is still this: the solution set of Ax = b is the set of
all vectors of the form w = p + vj, where v, is any solution of the
homogeneous equation Ax = 0.



Example: #35, p. 56

-\ -2 3! © (-1 o

st = I A A P
- b

-1 -y o [ 6 o o 0

Example: #37, p. 56 — assumptions matter!
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