Section 1.5: Solution Sets of Linear Systems

January 30, 2008

Abstract

This section shows us how to think of the solution set of a linear system geometrically, in terms of vectors. The main trick is to find the solution of a related system, the homogeneous system, and then find a particular solution to the system.

The solutions are some sorts of parametric representations of points (if only a trivial solution of the homogeneous equation exists), lines, planes, hyper-planes, etc.

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution (that is, other than the zero vector $\mathbf{x} = \mathbf{0}$) if and only if the system of equations has at least one free variable.

Theorem 6: Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given vector \mathbf{b} , and let \mathbf{p} be a particular solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Example: Proof (by linearity): #25, p. 56

(a) (Show that **w** is a solution.)

Suppose **p** is a solution of A**x** = **b**, so that A**p** = **b**. Let \mathbf{v}_h be any solution of the homogeneous equation A**x** = **0**, and let $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$. Show that **w** is a solution of A**x** = **b**.

$$A_{\underline{\omega}} = A(\underline{p} + \underline{y}_{n}) = A\underline{p} + A\underline{y}_{n}$$

$$= \underline{b} + \underline{0} = \underline{b}$$

(b) (Show that w is the only type of solution.)

Let **w** be any solution of A**x** = **b**, and define $\mathbf{v}_h = \mathbf{w} - \mathbf{p}$. Show that \mathbf{v}_h is a solution of A**x** = **b** has the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, with **p** a particular solution of A**x** = **b** and \mathbf{v}_h a solution of A**x** = **0**.

$$A(v_h) = A(w-p) = Av - Ap$$

$$= b - b = 0$$
So v_h is a solution.

So w = p + Vn is the cum of a particular sollar and a sola of the homogeneous

Example: #8, p. 55 $\begin{bmatrix} 1 & -2 & -9 & 5 \\ 0 & 1 & 2 & -6 \end{bmatrix}$

$$A \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 2 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Example: #9, p. 55 $\begin{bmatrix} 3 & -9 & 6 \\ -1 & 3 & -2 \end{bmatrix}_{2 \times 3} \begin{bmatrix} x_1 \\ y_2 \\ y_3 \end{bmatrix}_{3 \times 1} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}_{2 \times 3}$

$$\begin{bmatrix}
 1 & -3 & 2 & 0 \\
 0 & 0 & 0
 \end{bmatrix}
 \begin{cases}
 x_1 = 3x_2 - 2x_3
 \end{cases}$$

$$\underline{X} = \begin{pmatrix} 3 \times_2 - 2 \times_3 \\ \times_3 \\ \times_3 \end{pmatrix} = \times_2 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + \times_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

Ax= \(\frac{1}{2} - \frac{1}{2} \) what vectors \(\frac{1}{2} \) is a linear combon of the column vectors, which are scalar multiples of each other; so \(\frac{1}{2} \) has to be a scalar multiple of \(\begin{array}{c} -1 \end{array} \).

You might relate the solutions of these equations to your history from calculus as follows:

$$\begin{bmatrix} a_{11}a_{12}a_{13} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [0]$$

is the same as

$$\langle a_{11}, a_{12}, a_{13} \rangle \cdot \langle x_1, x_2, x_3 \rangle = 0$$

It says that the row vector (which we might call \mathbf{A}_1) is perpendicular, or orthogonal, to the solution vector \mathbf{x} .

Then

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

is the same as

$$\langle a_{11}, a_{12}, a_{13} \rangle \cdot \langle x_1, x_2, x_3 \rangle = 0$$

and

$$\langle a_{21}, a_{22}, a_{23} \rangle \cdot \langle x_1, x_2, x_3 \rangle = 0$$

i.e., that the \mathbf{x} is orthogonal to both row vector $(\mathbf{A}_1 \text{ and } \mathbf{A}_2)$.

Now if

$$\begin{bmatrix} a_{11}a_{12}a_{13} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [b]$$

this says that

$$\langle a_{11}, a_{12}, a_{13} \rangle \cdot \langle x_1, x_2, x_3 \rangle = b.$$

That is, that the projection of \mathbf{x} onto \mathbf{A}_1 is equal to b You remember what this means: that

$$\mathbf{A}_1 \cdot \mathbf{x} = |\mathbf{A}_1| |\mathbf{x}| \cos(\theta)$$

where θ is the angle between the vectors. Hence

$$A\mathbf{x} = \mathbf{b}$$

says: "the projections of \mathbf{x} onto the rows of A make up the components of \mathbf{b} ", and if

$$A\mathbf{x} = \mathbf{0}$$

then \mathbf{x} is orthogonal to every row of A; or, alternatively

" \mathbf{x} is orthogonal to the span of the row vectors of A".

The bang is still this: the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Example: #35, p. 56

$$\begin{bmatrix} -1 & -2 & 3 \\ -3 & -4 & 7 \\ -2 & -8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Example: #37, p. 56 – assumptions matter!

#26 Suppose Ax = b has a solon.

Explain why the solon is ! precisely when

Ax = 0 has only the trivial solon.

Let p be a solon.

Show that Ax = 0 has only the trivial sohn.

By contradiction, assume Ax = Q has a hon-trivial soln, $x_1 \neq Q$. Then $A(f+y_h) = Af + Ay_h = b + Q = b$ is another soln of Ax = b, which is a contradiction.

-. Ax = 0 has only the trivial solar.

Assume that Ax=0 has only the trivial solution, I that Ax= b is consistent.

Then the solution of Ax=b is night.

By contradiction i assume $A \times = b$ has
two distinct solar, $l_1 + p_2$. R_{in} $A(f_1 - f_2) = A f_1 + A f_2 = b = 0$ If $f_1 \neq g_2$, $f_2 = A f_2 = 0$ has a non-thiral solar,

Contradiction. .. Ax= b hes a ! sola.