Section 2.2: The Inverse of a
Matrix

February 10, 2008

Abstract

The inverse of a matrix is analogous to the multiplicative
reciprical: we want to solve Ax = b, and so we’d like to say that
x = b/A - but we don’t know how to say that with matrices!
Let’s find out....

First of all, this concept only applies when matrices are square: so
only n x n matrices could possibly be invertible.
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The inverse C' is denoted A~!, and is unique. A square matrix for which
the inverse fails to exist is called singular.

A simple formula exists for the inverse of a two-by-two matrix: if A is
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Otherwise, if ad — bc = 0, then A is singular. The quantity ad — be is
called the determinant of A: det(A) = ad — be.

Example: #1, p. 126 (check!)
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Theorem: 5 if A is invertible, then Ax = b has a unique solution for
each b: x = A~'b.

Example: #5, p. 126 (check!)
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Theorem: 6

a) If A is invertible, then (A=)~ = A.
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Example: #1, p. 126 (check!)
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(b) If A and B are n x n invertible matrices, then so is AB, and the
inverse of AB is the product of the inverses, in the reverse order: (AK)-‘. AT

(AB)™' = B7tA™! TACAB
More generally, the inverse of a product of any number of invert- I
ible matrices is the product of the inverses in reverse order. g'T-13 =
B'B="1

Example: #15, p. 126
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(c) If A is invertible, then so is AT, and the inverse of A7 is the
transpose of A~
(A~ = (A" ]
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Definition: an elementary matrix is one that is obtained by
performing a single elementary row operation on an identity matrix.
Each elementary matrix is invertible.

If an elementary row operation is performed on an m x n matrix A, the
resulting matrix can be written as FA, where the m x m matrix F is
created by performing the same row operation on 7,,,.

Example: #28, p. 127
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Theorem: 7 Matrix A, « , is invertible if and only if A is row equiv-
alent to I,. The elementary row operations that transform A into [,
simultaneously transforms 7, into A~!.

Theorem 7 suggests a method for finding A=!: row reduce the aug-
mented matrix [A7,]. 1If A is row equivalent to I, then [Al,] is row
equivalent to [[,, A™!].

Example: #1 p. 126
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Example: #18, p. 126
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Example: #19, p. 126
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Note : A~! is generally not calculated: we don’t need to know its
entries to solve Ax = b (similar to the notion that we don’t need to
row reduce to reduced row echelon form to solve: we can stop with a
triangular matrix).



