Section 2.3: Characterizations of
Invertible Matrices

February 18, 2008

Abstract

Theorem: 8 : The Invertible Matrix Theorem

Let A be a square n x n matrix. Then the following statements are
equivalent. That is, for a given A, the statements are either all true or
all false.

(a) A is invertible.

(b) A is row equivalent to the identity matrix. [A' I:\] ~ [ T" A-‘?
(¢) A has n pivot positions.

(d) The equation Ax = 0 has only the trivial solution.

e) The columns of A form a linearly independent set.
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(g) The equation Ax = b has at least one solution for each b in R".
(h) The columns of A span R".

(i) The linear transformation x — Ax maps IR" onto IR".

(J
(k) There is an n x n matrix D such that AD = 1.

)

)

)

)

)

) The linear transformation x — Ax is one-to-one.
)

)

)

) There is an n x n matrix C such that CA = I.
)

)

(1) AT is invertible.

The proof is interesting:
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As the author says, “the power of the Invertible Matrix Theorem lies
in the connections it provides between so many important concepts....”
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Definition: A linear transformation 7' : IR" — IR" is said to be
invertible if there exists a function S : R* — R" such that

S(T(x)) = x for all x in R" (1)
T(S(x)) =x for all x in R"

Theorem: 9 : Let T : IR" — R" be a linear transformation and let A
be the standard matrix for T' (see section 1.9, p. 83 for more — basically
the columns of A are the images T'(e;) of the columns e; of the identity
matrix). Then T is invertible if and only if A is an invertible matrix.
In that case, the linear transformation S given by S(x) = A7'x is the
unique function satisfying (1).

Tix = Rx
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Definition: : A matrix that is nearly — but not quite — singular is
said to be ill-conditioned. A matrix that is ill-conditioned causes
trouble when the time comes to invert, and for other calculations. The
condition number of a matrix measures how poorly conditioned a
matrix is. The identity matrix has a condition number of 1, and is
perfectly well-conditioned. The larger the condition number is, the
closer a matrix is to singular (the condition number is infinite for a

singular matrix). For a 2 x 2 matrix, the closer the determinant is to
zero, the larger the condition number.
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