Section 2.4/2.5: Matrix Partitions
and Factorizations

February 22, 2008

Abstract

The basic idea of matrix partitioning is to create and study
matrices whose elements are matrices — that might seem to be
compounding pain with pain, but is actually quite useful.

Matrix factorization of matrix A means to break a matrix
into a product. It is carried out for (at least) two different
reasons:

e because it’s advantageous to think of A as a series of suc-
cessive linear transformations, or

e to bring out some structure in the matrix A.
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For example, in the “proof graph” of Theorem 8 of section 2.3, we

might isolate the nodes making up the pentagonal cycle (a, b, ¢, d, and
j) and form a partitioned matrix



The matrix in the upper left-hand corner is a “permutation matrix”,
because it simply permutes the elements of the set of nodes a, b, ¢, d,
and j. By contrast to the whole matrix, this matrix can be multiplied
by itself as long as you want, and you will never get a “full” matrix (a
matrix with few zeros): you will always get a matrix with exactly five
non-zero elements.

Matlab code of this permutation matrix:

M+M~2+M"~3+M~4
What happens when M is multiplied by itself five times?

Note that the remaining matrices also have well-defined meanings
pertaining to different “activities” among the nodes:

e matrix F stands for “etcetera”: connections among the nodes
other than a, b, ¢, d, and j;

e matrix (¢ represents connections from the nodes a, b, ¢, d, and j
to the others; and

e matrix H represents connections from the others to the nodes a,

b, ¢, d, and j.



If either of G or H are zero matrices, then the nodes (representing dif-
ferent statements) will not have been shown to be equivalent, because,
though we may be able to get from one group of nodes to the other, we

won't be able to pet hack

Example: #2 and 3, p. 139
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The other really neat thing that this section presents is the idea of
matrix multiplication as a sum of outer-products. An outer-product of
two vectors u and v is the matrix product
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so the result is a matrix A,, x ,, whose entries are a,; = w;v;. We can

also form the outer-product vu? from these two vectors, of course.
So a matrix product AB can be thought of as
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(where the “” in the indices indicates which of rows or columns is being
chosen — if the dot occurs first, it’s a column; second, it’s a row).
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An example that we've already encountered is thinking of the matrix
inverse of square matrix A, A~!, as a product of elementary matrices:

B, BB = A
E, eeat] ~ (T A"

We're focusing on the LU decomposition, which is one strategy for
solving linear equations Ax = b. Rather than compute A™' (when
possible) and multiply b by it, it’s more advantageous to simply factor
A = LU, where L is lower-triangular and U is upper-triangular.

This process is better conditioned numerically, and may have other
advantages: for example, if A is sparse (has lots of zeros), the LU
decomposition may also have many zeros, but the inverse A~! tends to
be “full” (that is, of non-zero elements).

In order to solve Ax = b, we proceed as follows:
Ax = LUx = b,

A
so we can solve this in two steps: first, solve for y in
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It doesn’t seem that we've made much progress, since we've replaced
one equation by two, until we notice that it’s easy to solve both of the
new equations since they’re triangular (just use back-substitution). 1f
we need to solve many equations of the form Ax = b, with fixed A,
then it often makes sense to first factor into LU.

Example: #2, p. 149
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The algorithm for finding the LU factorization is simple:
(a) Reduce A to an echelon form U by a sequence of row replacement

operations, if possible.

(b) Place entries in L such that the same sequence of row operations
reduces L to I (and such that the “diagonal entries” (those with
equal indices, a;;) of L are one — remember, L is not necessarily

square).

Example: #10,p. 150 ( forget piveb~y )
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Example: #25, p. 150
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