Section 4.2: Null spaces, column
spaces, and linear transformations

March 3, 2008

Abstract
We examine various subspaces which are naturally defined

by a matrix A.

The solution set of the homogeneous equation 4,,  ,x = 0 forms a
subspace of IR", as one can easily see:

(a) the zero vector is in the solution set (the trivial solution);

(b) Consider two vectors in the solution set, u and v: then A(u+v) =
Au+ Av = 0+0 = 0, so the solution set is closed under addition.

(c) Consider a vectors in the solution set, u and an arbitrary constant
c: then A(cu) = cAu = 0, so the solution set is closed under
scalar multiplication.

Definition: Null space of an m x n matrix A: the null space of an
m x n matrix A, denoted Nul A, is the solution set of the homogeneous
equation Ax = I§)_ It is the set of all x € R™ that are mapped to the
zero vector of R™ by the transformation x — Ax.

Theorem 2: : The null space of an m x n matrix A is a subspace of

R".

Example: #3, p. 234.
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Notice that the number of vectors in the spanning set for Nul A
equals the number of free variables in the equation Ax = 0.

Definition: Column space of A : Another subspace associated with
the matrix A is the column space, Col A, defined as the span of the
columns of A: Col A = Span {a,...,a,}. As a span, it is clearly a
subspace (Theorem 3).

Col A ={b: b = Ax for some x in R"}, which says that Col A is

the range of the transformation x — Ax.

Definition: Row space of A : The column space of AT
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The null space of A lives ir;‘the row space of A. N ‘ a/{%—k
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Example: #22, p. 235
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Definition: Linear Transformation : A linear transformation T
from a vector space V into a vector space W is a rule that assigns to
each vector x in V' a unique vector T'(x) in W, such that

(a) Tlu + v) = T(u) + T(v)
(b) T(cu) = c¢T(u)

The kernel (or null space) of T is the set of u such that T'(u) = 0.
The range of T is the set of all vectors in W of the form T'(x) for some

x in V. &/ QQ—(«U““"‘*') P
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Examples of linear transformations include matrix transformations,
as well as differentiation in the vector space of differentiable functions
defined on an interval (a,b).

Example: Example #8, p. 233
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