Section 4.2: Null spaces, column spaces, and linear transformations

March 3, 2008

Abstract

We examine various subspaces which are naturally defined by a matrix A.

The solution set of the homogeneous equation $A_{m \times n} \mathbf{x} = \mathbf{0}$ forms a subspace of \mathbb{R}^n , as one can easily see:

- (a) the zero vector is in the solution set (the trivial solution);
- (b) Consider two vectors in the solution set, \mathbf{u} and \mathbf{v} : then $A(\mathbf{u}+\mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$, so the solution set is closed under addition.
- (c) Consider a vectors in the solution set, \mathbf{u} and an arbitrary constant c: then $A(c\mathbf{u}) = cA\mathbf{u} = \mathbf{0}$, so the solution set is closed under scalar multiplication.

Definition: Null space of an $m \times n$ matrix A: the null space of an $m \times n$ matrix A, denoted Nul A, is the solution set of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. It is the set of all $\mathbf{x} \in \mathbb{R}^n$ that are mapped to the zero vector of \mathbb{R}^m by the transformation $\mathbf{x} \longrightarrow A\mathbf{x}$.

Theorem 2: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

Example: #3, p. 234.

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix} \qquad A \times = 0$$

$$\begin{bmatrix} 1 & 3 & 5 & 0 & 0 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2 & 6 \\ 0 & 1 & 4 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 4 & 6 \\ 0 & 1 & 4 & -2$$

Notice that the number of vectors in the spanning set for Nul A equals the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$.

Definition: Column space of A: Another subspace associated with the matrix A is the column space, Col A, defined as the span of the columns of A: Col A = Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$. As a span, it is clearly a subspace (Theorem 3).

Col $A = \{ \mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n \}$, which says that Col A is the range of the transformation $\mathbf{x} \longrightarrow A\mathbf{x}$.

Definition: Row space of A: The column space of A^T

The null space of A lives in the row space of A.

Example: #16, p. 234

$$\begin{cases} \begin{bmatrix} b-c \\ 2b+c+d \\ 5c-4d \end{bmatrix} \\ \vdots \\ b,c,d \in \mathbb{R} \end{cases}$$

$$\begin{cases} 1 \\ 5c-4d \\ 0 \\ 0 \end{cases} + c \begin{bmatrix} -1 \\ 1 \\ 5 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix} \\ spece of$$

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 5 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(A \text{ is not unique - you could per-ite columns})$$

Example: #22, p. 235

Definition: Linear Transformation: A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

(a)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

(b)
$$T(c\mathbf{u}) = cT(\mathbf{u})$$

The **kernel** (or **null space**) of T is the set of **u** such that $T(\mathbf{u}) = \mathbf{0}$. The **range** of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V

Example: #30, p. 235

Prove that the range of T is a subspace of W. Let T(x) and T(w) be inages of rectors X + W of V.

Is
$$T(x)+T(y)$$
 in the reste?
 $T(x)+T(y) = T(x+y)$, so
the sun's in the reste.
 T_s $cT(x)$ in the rest ? Yes: $T(cx) = cT(x)$

Examples of linear transformations include matrix transformations, as well as differentiation in the vector space of differentiable functions defined on an interval (a, b).

Example: Example #8, p. 233

#34 p 7 34

$$T: C[0,1] \rightarrow C[0,1]$$

Given $f \in C[0,1]: T(f) = F = \int f(f) df / f(0) = 0$.

Show $f(x) = f(x) = \int f(f) + \int f(f) = \int f(f) df / f(f) =$