Section 4.5: The Dimension of a
Vector Space

March 26, 2008

Abstract

The dimension of 2-space is 2; the dimension of 3-space is
3! Dimension is really pretty obvious in a lot of ways: how
many “degrees of freedom” do you have to move around in? The
dimension of IR" is n; so we understand finite dimensional spaces
pretty well. What’s the dimension of the vector space of all
polynomials, P? Yes, Virginia, we can have infinite-dimensional
spaces....

Theorem 9: If a vector space V' has a basis B = {by,...,b,}, then
any set in V' containing more than n vectors must be linearly dependent.

Coma ot &/u'“) Vo) P, /

¢, ¢, ¢, o - (po5n =>
ell Ly ¢ 0 -
Ve n
c’_i Cay %, s ' \/*fr"“""
. . — n -%U-—
cm- Cin C' N -..a) o l\
- lﬂ\—” r,oh(_( P

Theorem 10: : If a vector space V' has a basis of n vectors, then every
basis of V' must consist of exactly n vectors.
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Definition: dimension of a vector space If V is spanned by a
finite set, then V is finite-dimensional, and the dimension V' (dim
V') is the number of vectors in a basis for V. The dimension of the zero
vector space {0} is defined to be zero. If V' is not spanned by a finite
set, then V' is said to be infinite-dimensional.

Example: #2, p. 260
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Theorem 11: Let H be a subspace of a finite-dimensional vector space
V. Any linearly independent set in H can be expanded, if necessary,
to a basis for H. Also, H is finite-dimensional and

dim H <dim V

Example: #11, p. 261
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Theorem 12 (the Basis Theorem): Let V' be a p-dimensional
vector space, p > 1. Any linearly independent set of exactly p elements

in V is automatically a basis for V. Any set of exactly p elements that
spans V is automatically a basis for V.

Example: #22, p. 261
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Let A be an m x n matrix. Then the dimension of Nul A is the

number of free variables in the equation Ax = 0, and the dimension of
Col A is the number of pivot columns in A.

Example: #14, p. 261
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Example: #27, 28, p. 262
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