Section 4.5: The Dimension of a Vector Space

March 26, 2008

Abstract

The dimension of 2-space is 2; the dimension of 3-space is 3! Dimension is really pretty obvious in a lot of ways: how many "degrees of freedom" do you have to move around in? The dimension of \mathbb{R}^n is n; so we understand finite dimensional spaces pretty well. What's the dimension of the vector space of all polynomials, P? Yes, Virginia, we can have infinite-dimensional spaces....

Theorem 9: If a vector space V has a basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Consider
$$\{V_{1},...,V_{p}\}$$
 pro.

$$\begin{cases}
C_{11} & C_{11} & C_{p1} \\
C_{12} & C_{22} & C_{p1} \\
C_{13} & C_{17} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{11} & C_{12} & C_{p1} \\
C_{12} & C_{22} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{11} & C_{22} & C_{p3} \\
C_{12} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{11} & C_{22} & C_{p3} \\
C_{12} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{12} & C_{23} & C_{p3} \\
C_{13} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{11} & C_{23} & C_{p3} \\
C_{12} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{12} & C_{23} & C_{p3} \\
C_{13} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{12} & C_{23} & C_{p3} \\
C_{13} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{p3} \\
C_{14} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{12} & C_{23} & C_{p3} \\
C_{13} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{23} & C_{p3}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{23} & C_{23}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{23} & C_{23}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{23} & C_{23}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{23} & C_{23} & C_{23}
\end{cases}$$

$$\begin{cases}
C_{13} & C_{2$$

Theorem 10: : If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Definition: dimension of a vector space If V is spanned by a finite set, then V is finite-dimensional, and the dimension V (dim V) is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

Example: #2, p. 260

$$\begin{cases}
\begin{bmatrix} 45 \\ -35 \end{bmatrix} : 5, t \in \mathbb{R}
\end{cases}
\begin{bmatrix} 45 \\ -35 \end{bmatrix} = 5 \begin{bmatrix} 4 \\ -3 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 805 : 5 : B = \left[\begin{bmatrix} 4 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right]$$

$$\begin{bmatrix} 805 : 5 : B = \left[\begin{bmatrix} 4 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right]$$

$$\begin{bmatrix} 805 : 5 : B = \left[\begin{bmatrix} 4 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right]$$

Theorem 11: Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$\dim H \leq \dim V$$

Example: #11, p. 261

Theorem 12 (the Basis Theorem): Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

A - invertile, det A +0, linely

Let A be an $m \times n$ matrix. Then the dimension of Nul A is the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$, and the dimension of Col A is the number of pivot columns in A.

Example: #14, p. 261

$$A = \begin{cases} 13 & -4 & 2 & -1 & 6 \\ 00 & 1 & -3 & 7 & 0 \\ 00 & 0 & 0 & 0 & 0 \end{cases}$$

$$din Nul A = 3$$

$$din Col A = 3$$

Example: #27, 28, p. 262