Section 5.1: Eigenvalues and Eigenvectors

April 2, 2008

Abstract

Since linear transformations generally represent deformations of a space, it seems like it would be rather odd to find that $T(\mathbf{x})$ is just a scalar multiple of \mathbf{x} . That seems a rather special property.

Here we're considering the transformation $T: \mathbf{x} \mapsto A\mathbf{x}$ for $A_{n \times n}$. Eigenvectors provide the ideal basis for \mathbb{R}^n when considering this transformation. Their images under the transformation are simply scalar multiples of themselves, and the multiple value is an eigenvalue.

Definition: Eigenstuff An **eigenvector** of $A_{n \times n}$ is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. The scalar λ is called the **eigenvalue** of A corresponding to \mathbf{x} . There may be several eigenvectors corresponding to a given λ .

The idea is that an eigenvector is simply scaled by the transformation, so the actions of a transformation are easily understood for eigenvectors. If we could write a vector as a linear combination of eigenvectors, then it would be easy to calculate its image: if there are n eigenvectors \mathbf{v}_i , with n eigenvalues λ_i , then if

$$\mathbf{v}_i$$
, with n eigenvalues λ_i , then if $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$

$$A\mathbf{u} = c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + \ldots + c_n \lambda_n \mathbf{v}_n$$

$$A\mathbf{v} = \begin{pmatrix} \lambda_1 \mathbf{v}_1 \\ \lambda_2 \mathbf{v}_2 \\ \lambda_3 \mathbf{v}_4 \end{pmatrix}$$

then

Nice, no?

If λ is an eigenvalue of matrix A corresponding to eigenvector \mathbf{v} , then

This means the
$$A\mathbf{v} = \lambda \mathbf{v}$$

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0} \implies A \mathbf{v} - \lambda \mathbf{T} \mathbf{v} = \mathbf{0}$$
 which is equivalent to
$$(A - \lambda I)\mathbf{v} = \mathbf{0}$$

So **v** is in the null space of $A - \lambda I$. If the null space is trivial, then **v** is the zero vector, and λ is not an eigenvalue. Alternatively, all vectors in the null space are eigenvectors corresponding to the eigenvalue λ (together they generate the **eigenspace** of A corresponding to λ).

As for determining the eigenvectors and eigenvalues, there is some cases in which this is extremely easy:

The eigenvalues of a diagonal matrix are the entries on its diagonal.

More generally,
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad A = \lambda T = \begin{bmatrix} 1 - \lambda & 0 \\ 0 & 2 - \lambda \end{bmatrix}$$
Example: #2, p. 308

Example: #2, p. 308

$$A = \begin{bmatrix} 7 & 3 \\ 3 & 1 \end{bmatrix} \qquad \lambda = -2 ?$$

$$A - (-2)I = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix}$$

$$T_{3} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3$$

Example: #5, p. 308

Is
$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 an aigenvector of $\begin{bmatrix} 3 & + & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix}$?

$$A \times = \lambda \times 7$$

$$A \times = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \cdot \times$$

$$Eigenvalue = 0$$

Example: #9, p. 308

$$A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix} \qquad \lambda = 1, 5 \qquad Fill eisenbases''$$

$$A - 1 \cdot \overline{L} = \begin{bmatrix} 5 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 \end{bmatrix} \qquad V_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$A \cdot 5 \cdot \overline{I} = \begin{bmatrix} 0 & 0 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & -4 \end{bmatrix} \qquad V_5 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Theorem 1: The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 2: If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

The eigenvectors and difference equations portion of this section can be illustrated with the example of the Fibonacci numbers transformation: recall that the Fibonacci numbers are those obtained by the recurrence relation

recurrence relation
$$F_n = F_{n-1} + F_{n-2}$$
 and $F_0 = 1$ and $F_1 = 1$.
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x}_n = \mathbf{x}_{n+1}$$
 where
$$x_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

The eigenvalues of this matrix are approximately $\gamma = \frac{1+\sqrt{5}}{2} \approx 1.618033988749895$ and -0.618033988749894. γ is the so-called "golden mean", which is a nearly sacred number in nature, well approximated by the ratio of consecutive Fibonacci numbers.

An eigenvector corresponding to the golden mean (normalized to have a norm of 1) is approximately

$$\left[\begin{array}{c} 0.5257311121191337 \\ 0.8506508083520401 \end{array}\right]$$

so that

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0.5257311121191337 \\ 0.8506508083520401 \end{bmatrix} = \gamma \begin{bmatrix} 0.5257311121191337 \\ 0.8506508083520401 \end{bmatrix}$$

1 2-8-1 = 0