Section 5.1: Eigenvalues and
Eigenvectors

April 2, 2008

Abstract

Since linear transformations generally represent deformations
of a space, it seems like it would be rather odd to find that 7'(x)
is just a scalar multiple of x. That seems a rather special prop-
erty.

Here we'’re considering the transformation 7" : x — Ax for
A, « n. Eigenvectors provide the ideal basis for IR" when consid-
ering this transformation. Their images under the transforma-
tion are simply scalar multiples of themselves, and the multiple
value is an eigenvalue.

Definition: Eigenstuff An eigenvector of 4,, , ,, is a nonzero vector
x such that Ax = Ax. The scalar X is called the eigenvalue of A
corresponding to x. There may be several eigenvectors corresponding
to a given A.

The idea is that an eigenvector is simply scaled by the transfor-
mation, so the actions of a transformation are easily understood for
eigenvectors. If we could write a vector as a linear combination of
eigenvectors, then it would be easy to calculate its image: if there are
n eigenvectors v;, with n eigenvalues J);, then if <
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If A is an eigenvalue of matrix A corresponding to eigenvector v,

then
Av = )\v
b

Av—Av=0 = Av-NTy =0

This means the

which is equivalent to

(A= X)v=0
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So v is in the null space of A — Al. If the null space is trivial, then v
is the zero vector, and A is not an eigenvalue. Alternatively, all vectors
in the null space are eigenvectors corresponding to the eigenvalue A
(together they generate the eigenspace of A corresponding to \).

As for determining the eigenvectors and eigenvalues, there is some
cases in which this is extremely easy:

The eigenvalues of a diagonal matrix are the entries on its diagonal.
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Theorem 1: The eigenvalues of a triangular matrix are the entries on
its main diagonal.
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Theorem 2: If vq,..., v, are eigenvectors corresponding to distinct
eigenvalues A{, ..., A, of an n x n matrix A, then the set {vq,...,v,}
is linearly independent.

The eigenvectors and difference equations portion of this section
can be illustrated with the example of the Fibonacci numbers transfor-
mation: recall that the Fibonacci numbers are those obtained by the
recurrence relation
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The eigenvalues of this matrix are approximately 5 = 225 == 1L GLR03HISETL05805

and -0.618033988749894. v is the so-called “golden méan”, which is a
nearly sacred number in nature, well approximated by the ratio of con-
secutive Fibonacci numbers.

An eigenvector corresponding to the golden mean (normalized to
have a norm of 1) is approximately

0.5257311121191337
0.8506508083520401

so that

l 0 1 ] l 0.52573111211913371

0.5257311121191337
11 0.8506508083520401
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