Question for today:
What’s a good way to find the eigenvalues of a matrix?

Answer for today:
We use what is called the “characteristic equation.”

1. ILLUSTRATIVE EXAMPLE

Let A = 41 . What are the eigenvalues of A? Well, X is an
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eigenvalue precisely when
has a nontrivial solution. Therefore, we can further analyze this equa-
tion to find eigenvalues.

(A=X)z =0

Consider the following question: When does the above equation have
nontrivial solutions? Well, (A — AI) is a matrix. If (A — Al)z = 0 has
nontrivial solutions, what do we know about (A — AI)? We know that
it is not invertible.

Let’s continue with this line of reasoning. If a matrix is not invert-

ible, what else do we know? We know that its determinant is zero.
That is,
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So what does_this tell us? This tells us that the determinant is zero
precisely wher(/\ = 3 or A = 2.)That is, the matrix (A — AI) is not
invertible for precisely these two values of A, which tells us that these

are precisely the eigenvalues of A.

This was only a 2 x 2 example, but let’s go ahead and take a look at
the general method:
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Theorem Given an n x n matrix A, we find the eigenvalues of A by
finding the numbers A that satisfy the characteristic equation for A.
The characteristic equation for A is given by

det(A—AI)=0
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This is nice, but in order to put it into practice we need to know
how to calculate determinants. Recall the following:

Given a matrix A, we can perform a total of » row replacement and
row interchange operations to obtain U, an echelon form of A. We do
not allow scalings in this process, so the pivots of U are probably not
equal to 1. Let uy, denote the diagonal entries of U. The determinant
of A is then defined as

det A = (—1)T . (’ILH’ILQQ Ce ’ILW,L)

Note that if even one diagonal entry of U is zero, then det A = 0.
Let’s do an example:
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If we did this right, the determinant should equal 29.
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While this makes for a nice definition of determinants, this method
of calculation will not be very handy when we are trying to find eigen-
values (except in very special situations). Instead, we will do our cal-
culations using cofactor expansion as in Section 3.1 of the book.

Example
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Let A = l ] . Find the eigenvalues of A.
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Can we also find the eigenspaces for this matrix?
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Let’s look at the definition of a characteristic equation once more.
We have det(A — AI) = 0. It turns out that for any n x n matrix A,
det(A — AI) will always yield a degree n polynomial in the variable A.

We call this the characteristic polynomial for A. So to find the eigen-
values for A, we can find the roots of the characteristic polynomial for
A.

Example PRPT O
Suppose A is a 7 x 7 paelynomied with characteristic polynomial p(\) =
(A —3)2(A2 — 2\ + 2)(A + 5/3)®. What are the eigenvalues for A?
T ——
Inz -d4ac <o

..=> 40-—\(22)6 Pad7l__{

Note that the roots 3 and —5/3 have different multiplicities in the
above polynomial. We say that the algebraic multiplicity of an eigen-
value is its multiplicity as a root of the characteristic polynomial. Note
also that sometimes the eigenvalues will be complex numbers, but we
will not consider such values. The following is an example of a 3 x 3
matrix for which this occurs (you can check yourself):
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2. SIMILARITY

Given two n X n matrices A and B, we say that A is similar to
B if there exists some invertible matrix P such that P~'AP = B, or
equivalently A = PBP~1. If we let Q = P! then we see that B is
also similar to A.

Theorem If two n X n matrices are similar, they have the same char-
acteristic polynomial and thus the same eigenvalues.

Proof.
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3. APPLICATION IN DYNAMICAL SYSTEMS

See example 5 in section 5.2 of the book.

HW: # 2, 11, 12, 16, 18, 24, 25, 27



