Section 5.3: Diagonalization

April 6, 2008

Definition: diagonalizable : A square matrix A is diagonalizable if
A is similar to a diagonal matrix. That is, if A = PDP~! for some
diagonal matrix D.

Definition: The Diagonalization Theorem : A, . , is diagonaliz-
able if and only if A has n linearly independent eigenvectors. Moreover,
A= PDP~! (where D is diagonal) if and only if the columns of P are
n linearly independent eigenvectors of A. In this case, the diagonal
entries of [ are the eigenvalues.
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Rewrite the equation A = PDP~! in the form AP = PD to un-
derstand what is going on: this is just the eigenvalue equation in par-
titioned form:
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where D is the diagonal matrix containing the eigenvalues.

Theorem 6: An n x n matrix with n distinct eigenvalues is diagonal-
izable. -—
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Theorem 7: Let A be an n x n matrix whose distinct eigenvalues are \Orv
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(a) For 1 <k < p, the dimension of the eigenspace for A is less than CD t]

or equal to the multiplicity of the eigenvalue Ay. ‘p,
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(b) The matrix A is diagonalizable if and ounly if the sum of the di- 2'3
mensions of the distinct eigenspaces equals n. ok e j

(c) If A is diagonalizable, and By, is a basis for the eigenspace corre-
sponding to A, then the collection of the bases By, ..., B, forms
an eigenvector basis for R".
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