## Section 6.3: Orthogonal Projections

April 18, 2008

## Abstract

This section formalizes one of the things that I've been emphasizing all along about projections, orthogonal complements, etc., to whit: when we can't solve the equation  $A\mathbf{x} = \mathbf{b}$  exactly, we solve the next best thing: we solve  $A\mathbf{x} = \hat{\mathbf{b}}$ , where  $\hat{\mathbf{b}}$  is the projection of  $\mathbf{b}$  onto the column space of A.

Theorem 8: The Orthogonal Decomposition Theorem: Let W be a subspace of  $\mathbb{R}^n$ . Then each  $\mathbf{y}$  in  $\mathbb{R}^n$  can be written uniquely in the form

$$y = \hat{y} + z$$

where  $\hat{\mathbf{y}}$  is in W and  $\mathbf{z}$  is in  $W^{\perp}$ . In fact, if  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$  is any orthogonal basis of W, then

 $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \ldots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$  and then  $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$ .  $\mathbf{z}$  is going to give the least square problem

**Definition:** orthogonal projection of y onto W: The vector  $\hat{\mathbf{y}}$  is called the orthogonal projection of y onto W, written  $\operatorname{proj}_W \mathbf{y}$ .



Example: #1, p. 400

(Mud Octave example)

Properties of orthogonal projections:

- (a) If  $\mathbf{y}$  is in  $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ , then  $\text{proj}_W \mathbf{y} = \mathbf{y}$ .
- (b) The orthogonal projection of y onto W is the best approximation to  $\mathbf{y}$  by elements of W.

Theorem 9: The Best Approximation Theorem: Let W be a subspace of  $\mathbb{R}^n$ ,  $\mathbf{y}$  any vector in  $\mathbb{R}^n$ , and  $\hat{\mathbf{y}}$  the orthogonal projection of  $\mathbf{y}$  onto W. Then  $\hat{\mathbf{y}}$  is the closest point in W to  $\mathbf{y}$ , in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{v}\|$$
 (現場)

for all  $\mathbf{v}$  in W distinct from  $\hat{\mathbf{y}}$ .

Example: Revisit #1, p. 400

**Theorem 10:** If  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$  is an orthonormal basis for a subspace W of  $\mathbb{R}^n$ , then

 $\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \ldots + (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p}$   $A \mid \mathbf{y} \cdot \mathbf{u}_{p} \mid \mathbf{y} \cdot \mathbf{v}_{p} \mid \mathbf{$ 

If 
$$U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_p]$$
, then

for all  $\mathbf{y}$  in  $\mathbb{R}^n$ .

Example: Revisit #1, p. 400

Now for a completely different example: I want to consider Taylor series expansions for function with three derivatives at a point a (that property defines our vector space: you should check that this is indeed a vector space, by checking that it's a subspace of the space of thrice differentiable functions). The Taylor series expansion for the function f about a is

$$C(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{2} + f'''(a)\frac{(x-a)^3}{6}$$

This is a <u>vector</u> in the space  $P_3$ . What we're doing is <u>projecting</u> the vector f (which is otherwise unspecified) onto  $P_3$ , in a way that minimizes the distance between the vectors  $p(x) \in P_3$  and f(x). I'm asserting that  $\|\mathbf{f}(\mathbf{x}) - \mathbf{C}(\mathbf{x})\|$  is minimal among elements of  $P_3$ .

With functions you have to be a little careful, because it's a little tricky to define just what is meant by an inner-product. We're not going to get into that now...!