Section 7.1: Diagonalization of
Symmetric Matrices

April 23, 2008

Abstract
As we begin chapter seven (and finish up the semester!), we
should keep track of our specific objectives (other than relaxing
after finals). We've got two goals:

{al to analvee the structure of general matrices of inlorma-
tion {like Land5at images, say, as described in the open-
ing pages of the chapter, p. 447, or like statistical data
sets) — we’ll do this via the Singular Value Decomposition,
wavelets, etc.; and

(b) to examine the behavior of symmetric matrices (those that

satisfy AT = A) as linear transformations (it turns out that
they're fundamental to goal (a)).

Great things happen when you work with symmetric matrices:
their special structure leads to some seemingly magical proper-
ties. Symmetric matrices are an important special case, as we
found in working with the least-squares problems (where the
left-hand side was A’ A, a symmetric matrix!).

Theorem 1: If A is symmetric, then any two eigenvectors from dif-
ferent eigenspaces are orthogonal.

Comment: In the past, when a matrix had two distinct eigenvalues
A1 and Ag, we could conclude that the corresponding eigenvectors were
independent — but we couldn’t conclude that the eigenvectors were
orthogonal.

Example: #13, p. 454



Definition: orthogonally diagonalizable A matrix is orthogonally di-
agonalizable if there is an orthogonal matrix PP and diagonal matrix D
such that

A=PDP"

Example: #22, p. 454

Theorem 2: A, ., is orthogonally diagonalizable if and only if A is
a symimetric matrix.

Theorem 3 (The Spectral Theorem): Symmetric A4, x , has the
following properties:

(a) A has n real eigenvalues, counting multiplicities (no complex
eigenvalues!).

(b) The dimension of the eigenspace for each eigenvalue A equals the
multiplicity of A as a root of the characteristic equation (no “miss-
ing” dimensions).

(¢) The eigenspaces are mutually orthogonal: eigenvectors correspond-
ing to different eigenvalues are orthogonal (no shadows cast on
each other).



(d) A is orthogonally diagonalizable.

Let’s look at the geometry of this: if we think about transforming
the n-dimensional unit ball into an ellipsoid, then it turns out that
the eigenvectors are the major/minor axes of the ellipsoid, and the
eigenvalues are the stretch factors.

Example: #31, p. 455
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Since A = PDPT, where p is an orthogonal matrix, we can write

T T T
A= uu; + bwu, +...+ \uu,,

the spectral decomposition of A. Each matrix ujujT is a projection
matrix: the projection of vector x onto the subspace spanned by u; is
given by

RS — Ty, —
Proj X = uu; x = (x - u;)u;

(the last part of the equation is one way of thinking of the projection
that I’ve emphasized).

Example: #34, p. 455
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The action of A as a linear transformation is well understood, therefore:
Ax = hwul x + dwuix + ... F Au,ulx,
or
Ax = (Zulx)u; + oul x)uy + ...+ (Aulx)u,.

That is, we project x onto each basis vector, and then multiply each of
these projections by the corresponding eigenvalue. Alternatively, if
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where P represents the basis composed of its columns, then
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Ax =

)\7L‘/E7L P

Neat!



