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The Action of a Symmetric Matrix

First of all, 1t is useful to understand the action of a symmetric matrix in a linear
transformation. T - » — A p. We know that a symmetric matrix can be represented as

A4=pppl

where P 1s an orthogonal matrix (that is, a matrix whose columns are orthogonal to each
other, and of unit length). The columns of P are (orthogonal) eigenvectors of 4, and D is
the diagonal matrix of eigenvalues. Thus, when a vector x 1s multiplied by 4,

Ax = PDPx ;’”—(‘P IE L_’/:Y

the geometric result can be visualized using the unit ball (of unit radius) in R”. It is
transformed into an ellipsoid, with the eigenvectors representing the axes of the ellipsoid,
and the eigenvalues providing the scaling of each axis of the ellipsoid. We can also think
of how this transformation comes about as a succession of three steps:

= Multiplication by PT, by the transpose of the orthogonal matrix P, corresponds to a

rotation of the space R”. It rotates each of the eigenvectors p; into the standard
vector e;.
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= Multiplication by D represents a scaling of each of the now "standardized"
eigenvectors: each is stretched by the appropriate factor, the eigenvalue;

= Multiplication of the result by P rotates the scaled eigenvectors back into their
original positions.

In conclusion, you can think of the "action" of a symmetric matrix as a product of these

three simple actions on R”: a rotation, a scaling, and a rotation.

The SVD Theorem

It turns out that this aspect of symmetric matrices is true in general: every matrix can be
thought of as the product of an orthogonal matrix, a diagonal matrix, and the transpose of
an orthogonal matrix.

Every matrix 4 is related to two important symmetric matrices: A" 4 and 44" Since each
of these two matrices 1s symmetric, each can be represented as a product

AAT = UD,UT
ATA = VD, VT

Furthermore, the diagonal matrices D1 and D7 have positive entries on the diagonal. We

can see that from the spectral decomposition of 44" and A7 A. For example,
AAT = XM oo Attt

Hence,

ui»*—lATu.l = Alu{ul u.fu.l +0 = Aq(ug - uq)(ug - uy) = Ag
but since

ui AATuy = ATuy - ATuy = ||ATwy||* > 0. weknow that \; > 0.

Theorem: Let A be an mxn matrix with real components. Then 4 = Usy! where Uand V

are as defined above, and X is the matrix with positive { > () entries such that EET= D1
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We can easily show that, with 4 = UZVT, the formulas for 447 and 4”4 work out:

AAY = UZVIVEUY = U U = UDUY

ATA=VEUFUZV: =VEEV' = VD, V'

Notice that the orthogonal diagonalization of a symmetric matrix is the singular value
decomposition 1n that case.

What follows 1s an illustration of the SVD, as diagrammed by Cliff Long and Tom Hern
in the case of R?. In this example, the notation is U= Q1 and V' = 0.

n A= Q.,EQ,T A
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You see that the action of a general matrix A4 can also be viewed as a rotation, followed by
a scaling, followed by a rotation. If A4 1s not square, or not full rank, then there will be a
null space, and some of the dimensions will be annihilated.

The SVD for image processing, image analysis, and
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statistical analysis

If 4 is rank n, then A can be written as a spectral decomposition, too, in terms of the

eigenvectors and the eigenvalues of A4 and 44", The eigenvectors of A4 and 44" are
called the singular vectors of 4:

A== “Ill)‘u—lu-ll’:f + ot \f./?nuna'f

T T
A=y, + ...+ gaunt,

and where, by convention, X: 2 A j for 2 < j The values g; = ‘L.;'f;'*—-i are called the

singular values of the matrix. This is crucial for image processing: often an image is not
full rank, so that there are few products; furthermore, it may be that an image contains
noise, and the noise tends to be high frequency and of little total weight. It may be that it
"hangs out" on the last few singular vector pairs. We simply drop those from the
recomposition of the matrix 4, and we will have de-noised the image.

On a similar note, the information contained in the last singular vector pairs may not be
very important to the recomposition of the image, so that we can drop them without much
loss of information. This represents compression of the image.

The SVD summarizes the basic spaces related to a
matrix A

The Col(A) 1s given by the columns of U corresponding to non-zero singular values.
The Row(A) is given by the columns of } corresponding to non-zero singular
values.

The Nul(4) is given by the columns of V' corresponding to zero singular values; and
of course

The Nul(4 T) 1s given by the columns of U corresponding to zero singular values.

Applications
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= We can use the SVD to interpolate a matrix
{ http:/www nku edu/'~longa/classes/mat225/days/dad/svd3 doc) . See Long, A and
C. Long. Surface Approximation and Interpolation Via Matrix SVD, The College
Mathematics Journal, Vol 32, #1, January, 2001:20-25.

= When we can't invert a matrix, we can define a "pseudo-inverse” via the SVD
(http:/www nku edu/'~longa/classes/mat225/days/dad/pseudo_jpg) . This 1s precisely
what we do when we solve the linear regression/least squares problem in general;
we can't solve Ax = b because the system s inconsistent; but we can find a

least-squares solution, by inverting (when possible). When it's not possible, we use a
pseudo-inverse solution.
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