
MAT225 Section Summary: 6.3
Orthogonal Projections
Summary

This section formalizes one of the things that I’ve been emphasizing all
along about projections, orthogonal complements, etc., to whit: we can’t
solve the equation Ax = b, so we try to solve the next best thing: we solve
Ax = b̂, where b̂ is the projection of b onto the column space of A.

Theorem 8: The Orthogonal Decomposition Theorem Let W be
a subspace of IRn. Then each y in IRncan be written uniquely in the form

y = ŷ + z

where ŷ is in W and z is in W⊥. In fact, if {u1,u2, . . . ,up} is any orthogonal
basis of W , then

ŷ =
y · u1

u1 · u1
u1 + . . . +

y · up

up · up

up

and then z = y − ŷ.

orthogonal projection of y onto W : The vector ŷ is called the orthogonal
projection of y onto W , written projWy.

Properties of orthogonal projections:

1. If y is in W = Span {u1,u2, . . . ,up}, then projWy = y.

2. The orthogonal projection of y onto W is the best approximation to y

by elements of W .

Theorem 9: The Best Approximation Theorem Let W be a sub-
space of IRn, y any vector in IRn, and ŷ the orthogonal projection of y onto
W . Then ŷ is the closest point in W to y, in the sense that

‖y − ŷ‖ < ‖y − v‖

for all v in W distinct from ŷ.
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Theorem 10: If {u1,u2, . . . ,up} is an orthonormal basis for a subspace
W of IRn, then

projWy = (y · u1)u1 + (y · u2)u2 + . . . + (y · up)up

If U = [u1 u2 . . . up], then

projWy = UUT y

for all y in IRn.

Now, as an example, I want to consider Taylor series expansions for func-
tion with three derivatives at a point a (that might define our space: you
should check that this is indeed a vector space, by checking that it’s a sub-
space of the space of thrice differentiable functions). The Taylor series ex-
pansion for the function f is

C(x) = f(a) + f
′

(a)(x − a) + f
′′

(a)
(x − a)2

2
+ f

′′′

(a)
(x − a)3

6

This is a vector in the space IP3. What we’re doing is projecting the vector
f (which is otherwise unspecified) onto IP3, in a way that minimizes the
distance between the vectors
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(in fact, the difference between these vectors is zero!).

Now with functions you have to be a little careful, because it’s a little
tricky to define just what is meant by an inner-product. We’re not going to
get into that...!
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