
MAT225 Section Summary: 7.1
Diagonalization of Symmetric Matrices
Summary

As we begin chapter seven, we should keep track of our specific objectives:
we’re interested in two goals:

1. we’re examining the actions of symmetric matrices as linear transfor-
mations, and

2. we’re interested in analyzing the structure of general matrices of in-
formation (like images, say, as described in the opening pages of the
chapter, p. 447).

Great things happen when you find yourself working with symmetric matri-
ces. Their special structure leads to some seemingly magical properties, as
we see here. Symmetric matrices are obviously an important special case,
as we found in working with the least-squares problems (where the left-hand
side was AT A, a symmetric matrix!).

Theorem 1: If A is symmetric, then any two eigenvectors from different
eigenspaces are orthogonal.

Example: #13, p. 454

orthogonally diagonalizable: A matrix is orthogonally diagonalizable if
there is an orthogonal matrix P and diagonal matrix D such that

A = PDP T
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Example: #22, p. 454

Theorem 2: An x n is orthogonally diagonalizable if and only if A is a
symmetric matrix.

The Spectral Theorem: Symmetric An x n has the following properties:

1. A has n real eigenvalues, counting multiplicities (no complex eigenval-
ues!).

2. The dimension of the eigenspace for each eigenvalue λ equals the mul-
tiplicity of λ as a root of the characteristic equation (no “missing”
dimensions).

3. The eigenspaces are mutually orthogonal: eigenvectors corresponding
to different eigenvalues are orthogonal.

4. A is orthogonally diagonalizable.

Example: #31, p. 455
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Since A = PDP T , where p is an orthogonal matrix, we can write

A = λ1u1u
T
1

+ λ2u2u
T
2

+ . . . + λnunu
T
n ,

the spectral decomposition of A. Each matrix uju
T
j is a projection

matrix: the projection of vector x onto the subspace spanned by uj is given
by

proj
uj

x = uju
T
j x = (x · uj)uj

(the last part of the equation is one way of thinking of the projection that
I’ve emphasized).

Example: #34, p. 455

The action of A as a linear transformation is well understood, therefore:

Ax = λ1u1u
T
1
x + λ2u2u

T
2
x + . . . + λnunu

T
nx,

or
Ax = (λ1u

T
1
x)u1 + (λ2u

T
2
x)u2 + . . . + (λnu

T
nx)un.

That is, we project x onto each basis vector, and then multiply each of these
projections by the corresponding eigenvalue. Alternatively, if

x =













x1

x2

...
xn
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where P represents the basis composed of its columns, then

Ax =













λ1x1

λ2x2

...
λnxn


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







P

Neat!
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