Section 1.1: Statements, Symbolic
Representations, and Tautologies

January 14, 2008

Abstract

We encounter the elements of logic: statements, connectives, tautologies, contradictions,
etc., and create wifs (“whiffs”) from these basic elements. An algorithm for detecting tautolo-
gies in the form of implications is described.

Note: dual labelled exercises refer to 5th/6th edition numbers. Hence #26/29 refers to
problem 26 in the 5th edition, and 29 in the 6th edition.

e Statement/proposition: a sentence possessing truth value (T or F)).
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e Logical connectives join statements into formulas, or compound statements:

ARV

— conjunction (symbolized by A, “and”)
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— disjunction (symbolized by Vv, “or”)

— implication (symbolized by —: (does its table seem weird to you? It’s by convention!)

In the implication A — B, A is the antecedent, and B is the consequent. Some
English equivalents to implication are given in Table 1.5.
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Implication plays an especially important role among connectives, so learn it well!
— equivalence (symbolized by «—, “if and only if”)

— negation (symbolized by ’, “not” — unary)

Note: These connectives are not independent - some of these may be derived from the

others (Exercise #29/33 shows that conjunction and negation suffice to write the others, for
example).
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Example (more interesting‘;, and demon':strating that context is important for a statement’s
truth value): The dilemma of Protagoras and Eualthus

Well-formed formula (wff - "whiff”) is a compound statement made up of statements,
logical connectives, and other wifs What makes one well-formed?
— Order of precedence:

* parentheses

* ?

% conjunction, disjunction
* implication
x equivalence

Order of precedence helps us to simplify our lives: hence,

ANB — C means (AANB) — C

— main connective (last to be applied)

Truth table for a wil with n statement letters: 2" rows

Example: the table for implication above, which is a binary (2 statement letter) logical con-
nective. Hence there are 22 = 4 rows.

N
tautology: wil which is always true (represented by 1). T/ \1—' T/ V:

contradiction: wil which is always false (represented by 0).

equivalent wffs: wffs A and B are equivalent, A <= B, if the wif

A«—— B
is a tautology. (How can we prove that?)
Some tautological equivalences:
la. AvB < BV A 1b. ANB < BAMAA Commutative
2a. (AVB)VC < AV (BVC() 2b. (ANB)ANC <= AN(BAC) Associative
3a. AV(BANC) < (AVB)AN(AVC(C) 3b. AN(BVC(C) < (AADB)V(AAC) Distributive
da. AV0O <—= A 4db. ANl <—= A Identity

ba. AVA —= 1 5b. ANA" <= 0 Complement,



Equivalent wffs will be useful when we are proving arguments, and want to replace complex

wifs with simpler ones.

e De Morgan’s Laws are two specific examples of equivalent wffs:

- (AVB) < A AP :
IS oL /Fk/
- (AANB) < AVvB = q]"* T

Hence we claim that (AV B)' «—— (A’ A B') is a tautology.
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Notice that the two formulas of De Morgan’s Laws appear analogous (“dual”). In fact, one is

the negation of the other.
Question: How so?
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e Algorithm: a set of instructions that can be mechanically executed in a finite amount of
time in order to solve some problem.

Often written out in pseudocode, the author provides us an example: the algorithm Tautol-
ogyTest is useful for whether or not an implication (that is, a wif where the main connective

s mmplication) is, in fact, always true (a tautology). She proceeds by contradiction (one proof
technique we’ll study further in Chapter 2): assume that the implication P — @) is false.
Then P must be true, and @ false (the only scenario which makes an implication false).
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Building a truth table for the implication also constitutes an algorithm to test to see if it is

true, but, although the truth table algorithm may be more powerful (as more general, working
for all would-be tautologies), TautologyTest may be faster when applied to an implication.
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